|
Basic Characteristics of Mutations
|
|
Mutation Site
|
127delH |
|
Mutation Site Sentence
|
A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Deletion |
|
Gene/Protein/Region
|
Gag |
|
Standardized Encoding Gene
|
Gag
|
|
Genotype/Subtype
|
HIV-1 |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
HIV Infections
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
lopinavir (LPV);darunavir (DRV) |
|
Location
|
Nigeria |
|
Literature Information
|
|
PMID
|
33144375
|
|
Title
|
In Vivo Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix
|
|
Author
|
Datir R,Kemp S,El Bouzidi K,Mlchocova P,Goldstein R,Breuer J,Towers GJ,Jolly C,Quinones-Mateu ME,Dakum PS,Ndembi N,Gupta RK
|
|
Journal
|
mBio
|
|
Journal Info
|
2020 Nov 3;11(6):e02036-20
|
|
Abstract
|
Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness.
|
|
Sequence Data
|
-
|
|
|