HBV Mutation Detail Information

Virus Mutation HBV Mutation 40_54del


Basic Characteristics of Mutations
Mutation Site 40_54del
Mutation Site Sentence Table 2
Mutation Level Nucleotide level
Mutation Type Deletion
Gene/Protein/Region PreS1;PreS2;S
Standardized Encoding Gene S  
Genotype/Subtype C
Viral Reference X02763
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location China
Literature Information
PMID 34902556
Title Analysis of entire hepatitis B virus genomes reveals reversion of mutations to wild type in natural infection, a 15 year follow-up study
Author Chen QY,Jia HH,Wang XY,Shi YL,Zhang LJ,Hu LP,Wang C,He X,Harrison TJ,Jackson JB,Wu L,Fang ZL
Journal Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
Journal Info 2022 Jan;97:105184
Abstract It has been reported that some mutations in the genome of hepatitis B virus (HBV) may predict the outcome of the virus infection. However, evolutionary data derived from long-term longitudinal analysis of entire HBV genomes using next generation sequencing (NGS) remain rare. In this study, serum samples were collected from asymptomatic hepatitis B surface antigen (HBsAg) carriers from a long-term prospective cohort. The entire HBV genome was amplified by polymerase chain reaction (PCR) and sequenced using NGS. Twenty-eight time series serum samples from nine subjects were successfully analysed. The Shannon entropy (Sn) ranged from 0 to 0.89, with a median value of 0.76, and the genetic diversity (D) ranged from 0 to 0.013, with a median value of 0.004. Intrahost HBV viral evolutionary rates ranged from 2.39E-04 to 3.11E-03. Double mutations at nt1762(A --> T) and 1764(G --> A) and a stop mutation at nt1896(G --> A) were seen in all sequences from subject BO129 in 2007. However, in 2019, most sequences were wild type at these positions. Deletions between nt 2920-3040 were seen in all sequences from subject TS115 in 2007 and 2013 but these were not present in 2004 or 2019. Some sequences from subject CC246 had predicted escape substitutions (T123N, G145R) in the surface protein in 2004, 2013 and 2019 but none of the sequences from 2007 had these changes. In conclusion, HBV mutations may revert to wild type in natural infection. Clinicians should be wary of predicting long-term prognoses on the basis of the presence of mutations.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.