IV Mutation Detail Information

Virus Mutation IV Mutation 66_77del


Basic Characteristics of Mutations
Mutation Site 66_77del
Mutation Site Sentence This amino acid substitution is predicted to generate an area of alpha helix in the secondary structure of the amino-terminal portion of the NS1 protein of the revertant viruses which may compensate for loss of an alpha-helical region due to the deletion of amino acids 66 to 77 in the NS1 protein of the 143-1 virus.
Mutation Level Amino acid level
Mutation Type Deletion
Gene/Protein/Region NS1
Standardized Encoding Gene NS
Genotype/Subtype H3N2
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 1830112
Title Intragenic suppression of a deletion mutation of the nonstructural gene of an influenza A virus
Author Treanor JJ,Buja R,Murphy BR
Journal Journal of virology
Journal Info 1991 Aug;65(8):4204-10
Abstract The influenza A/Alaska/77 (H3N2) virus mutant 143-1 is temperature sensitive (ts) due to a spontaneous in-frame 36-nucleotide deletion in the nonstructural (NS) gene segment, which leads to a 12-amino-acid deletion in the NS1 protein. In addition, it has a small-plaque phenotype on MDCK cell monolayers. However, phenotypically revertant (i.e., ts+) viruses were isolated readily following replication of the 143-1 virus both in vitro and in vivo. In order to determine the genetic mechanism by which escape from the ts phenotype occurred, we performed segregational analysis and found that an intrasegmental suppressor mutation caused the loss of the ts phenotype. Nucleotide sequence analysis revealed the presence of an intragenic mutation in each of the ts+ phenotypic revertant viruses, involving a substitution of valine for alanine at amino acid 23 of the NS1 protein. This mutation resulted in acquisition of the ts+ phenotype and also in the large-plaque phenotype on MDCK cells, characteristic of the wild-type A/Alaska/77 parent virus. This amino acid substitution is predicted to generate an area of alpha helix in the secondary structure of the amino-terminal portion of the NS1 protein of the revertant viruses which may compensate for loss of an alpha-helical region due to the deletion of amino acids 66 to 77 in the NS1 protein of the 143-1 virus.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.