HDV Mutation Detail Information

Virus Mutation HDV Mutation A1012G


Basic Characteristics of Mutations
Mutation Site A1012G
Mutation Site Sentence With time, some sequences changed A to G at 1012 or 1011, to create the opal or amber terminator, respectively.
Mutation Level Nucleotide level
Mutation Type
Gene/Protein/Region S-HDAg
Standardized Encoding Gene sHD  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 7474144
Title Hepatitis delta virus mutant: effect on RNA editing
Author Wu TT,Bichko VV,Ryu WS,Lemon SM,Taylor JM
Journal Journal of virology
Journal Info 1995 Nov;69(11):7226-31
Abstract During the replication cycle of hepatitis delta virus (HDV), RNA editing occurs at position 1012 on the 1679-nucleotide RNA genome. This changes an A to G in the amber termination codon, UAG, of the small form of the delta antigen (delta Ag). The resultant UGG codon, tryptophan, allows the translation of a larger form of the delta Ag with a 19-amino-acid C-terminal extension. Using HDV cDNA-transfected cells, we examined the editing potential of HDV RNA mutated from G to A at 1011 on the antigenome, adjacent to normal editing site at 1012. Four procedures were used to study not only the editing of the A at 1012, but also that of the new A at 1011: (i) nucleotide sequencing, (ii) a PCR-based RNA-editing assay, (iii) immunoblot assays, and (iv) immunofluorescence. Five findings are reported. (i) Even after the mutation at 1011, editing still occurred at 1012. (ii) Site 1011 itself now acted as a novel RNA-editing site. (iii) Sites 1011 and 1012 were edited independently. (iv) At later times, both sites became edited, thereby allowing the synthesis of the large form of the delta Ag (delta Ag-L). (v) Via immunofluorescence, such double editing became apparent as a stochastic event, in that groups of cells arose in which the changes had taken place. Evaluation of these findings and of those from previous studies of the stability of the HDV genomic sequence (H.J. Netter et al., J. Virol. 69:1687-1692, 1995) supports both the recent reevaluation of HDV RNA editing as occurring on antigenomic RNA (Casey and Gerin, personal communication) and the interpretation that editing occurs via the RNA-modifying enzyme known as DRADA.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.