HCMV Mutation Detail Information

Virus Mutation HCMV Mutation A143V


Basic Characteristics of Mutations
Mutation Site A143V
Mutation Site Sentence The A143V mutant was a conservative substitution at the first internal cleavage site.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region protease
Standardized Encoding Gene UL80a
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 9008301
Title Initial characterization of autoprocessing and active-center mutants of CMV proteinase
Author Snyder SW,Edalji RP,Lindh FG,Walter KA,Solomon L,Pratt S,Steffy K,Holzman TF
Journal Journal of protein chemistry
Journal Info 1996 Nov;15(8):763-74
Abstract Human cytomegalovirus (CMV) encodes a unique serine proteinase that is required in the maturation of the viral capsid. The CMV proteinase can undergo autocatalytic activation and is subject to proteolytic self-inactivation. Mutant enzyme forms were prepared to eliminate the initial autoprocessing site and thus form an active single-chain protein for structure-function studies. Two mutants of CMV proteinase were cloned and expressed in Escherichia coli. The A143V mutant was a conservative substitution at the first internal cleavage site. The S132A mutant modified one of the triad of residues responsible for catalytic activity. Through the use of computer-controlled high-cell-density fermentations the mutant proteins were expressed in E. coli at approximately 170 mg/L as both soluble (approximately 40% of total) and inclusion-body forms (approximately 60% of total). The soluble enzyme was purified by standard methods; inclusion-body protein was isolated by standard methods after refolding and solubilization in guanidine or urea. Sedimentation equilibrium and sedimentation velocity analyses reveal that the enzyme undergoes concentration-dependent aggregation. It exhibits a monomer <==> dimer equilibrium (Kd = 1 microM) at low concentrations and remains dimeric at high concentrations (28 mg/ml). Differential scanning calorimetry data for protein thermal unfolding fit best to a non-two-state model with two components (Tm = 52.3 and 55.3 degrees C) which subsequently aggregate upon unfolding. Analysis of the short-UV circular dichroism spectra of protein forms resulting from expression as soluble molecules (not refolded) reveals that the two mutants have very similar secondary structures which comprise a mixed structural motif of 20% alpha-helix, 26% beta-sheet, and 53% random coil. Though soluble and active (A143V mutant only), CD analysis revealed that protein refolded from inclusion bodies did not exhibit spectra identical to that of protein expressed only in soluble form.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.