HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation A168H


Basic Characteristics of Mutations
Mutation Site A168H
Mutation Site Sentence Thus, HSV1-tk(A168H) may potentially be used as a second reporter gene in combination with wtHSV1-tk to achieve differential PET.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region TK
Standardized Encoding Gene UL23  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 19223410
Title Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs
Author Najjar AM,Nishii R,Maxwell DS,Volgin A,Mukhopadhyay U,Bornmann WG,Tong W,Alauddin M,Gelovani JG
Journal Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Journal Info 2009 Mar;50(3):409-16
Abstract Imaging 2 different molecular-genetic events in a single subject by PET is essential in a variety of in vivo applications. Using herpes simplex virus-1 thymidine kinase (HSV1-tk) mutants with narrower substrate specificities in combination with wild-type HSV1-tk (wtHSV1-tk) would enable differential imaging with corresponding radiotracers, namely 2'-deoxy-2'-(18)F-fluoro-5-ethyl-1-beta-d-arabinofuranosyl-uracil ((18)F-FEAU) and the acycloguanosine derivative 9-(4-(18)F-fluoro-3-[hydroxymethyl]butyl)guanine ((18)F-FHBG). In this study, we evaluated wtHSV1-tk and the A168H mutant, which has been reported to exhibit enhanced acycloguanosine substrate catalytic activity and diminished pyrimidine phosphorylating activity, as PET reporter genes. METHODS: Computational analysis was performed to assess the binding mode of FHBG and FEAU to wtHSV1-tk and the A168H variant. U87 cells were stably transduced with wtHSV1-tk or HSV1-tk(A168H) fused with green fluorescent protein and sorted to obtain equivalent transgene expression. In vitro uptake studies were performed to determine rates of substrate accumulation and retention. Nude mice bearing tumors expressing HSV1-tk variants were subsequently imaged using (18)F-FHBG and (18)F-FEAU. RESULTS: Docking results indicate that binding of FHBG to the A168H variant is unaffected whereas the binding of FEAU is hindered because of a steric clash with the bulkier mutant residues. U87 cells expressing HSV1-tk(A168H) accumulated (18)F-FHBG in in vitro uptake studies at a 3-fold higher rate than did cells expressing wtHSV1-tk without any detectable accumulation of (3)H-FEAU. Furthermore, HSV1-tk(A168H) demonstrated no thymidine phosphorylation activity. In contrast, U87 cells expressing wtHSV1-tk preferentially accumulated (3)H-FEAU at an 18-fold higher rate than they did (18)F-FHBG. Tumors expressing wtHSV1-tk or HSV1-tk(A168H) were distinctly imaged with (18)F-FEAU or (18)F-FHBG, respectively. Hence, tumors expressing HSV1-tk(A168H) accumulated 8.4-fold more (18)F-FHBG than did tumors expressing wtHSV1-tk. In addition, wtHSV1-tk tumors, compared with HSV1-tk(A168H)-expressing tumors (which retained baseline levels of the radiotracer), preferentially accumulated (18)F-FEAU. CONCLUSION: The FEAU and FHBG substrate discrimination capacity of the wtHSV1-tk and HSV1-tk(A168H) reporter enzymes was validated in vivo by PET of mice with tumor xenografts established from U87 cells expressing these different reporters. Thus, HSV1-tk(A168H) may potentially be used as a second reporter gene in combination with wtHSV1-tk to achieve differential PET.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.