|
Basic Characteristics of Mutations
|
|
Mutation Site
|
A226V |
|
Mutation Site Sentence
|
CONCLUSION: the E1-A226V mutation probably acts at different steps of the CHIKV life cycle, affecting multiple functions of the virus. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
E1 |
|
Standardized Encoding Gene
|
E1
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
EU224268;EU224269
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Chikungunya Fever
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
21801412
|
|
Title
|
Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction
|
|
Author
|
Tsetsarkin KA,McGee CE,Higgs S
|
|
Journal
|
Virology journal
|
|
Journal Info
|
2011 Jul 29;8:376
|
|
Abstract
|
BACKGROUND: Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus that recently caused several large scale outbreaks/epidemics of arthritic disease in tropics of Africa, Indian Ocean basin and South-East Asia. This re-emergence event was facilitated by genetic adaptation (E1-A226V substitution) of CHIKV to a newly significant mosquito vector for this virus; Aedes albopictus. However, the molecular mechanism explaining the positive effect of the E1-A226V mutation on CHIKV fitness in this vector remains largely unknown. Previously we demonstrated that the E1-A226V substitution is also associated with attenuated CHIKV growth in cells depleted by cholesterol. METHODS: In this study, using a panel of CHIKV clones that varies in sensitivity to cholesterol, we investigated the possible relationship between cholesterol dependence and Ae. albopictus infectivity. RESULTS: We demonstrated that there is no clear mechanistic correlation between these two phenotypes. We also showed that the E1-A226V mutation increases the pH dependence of the CHIKV fusion reaction; however, subsequent genetic analysis failed to support an association between CHIKV dependency on lower pH, and mosquito infectivity phenotypes. CONCLUSION: the E1-A226V mutation probably acts at different steps of the CHIKV life cycle, affecting multiple functions of the virus.
|
|
Sequence Data
|
-
|