|
Basic Characteristics of Mutations
|
|
Mutation Site
|
A23063T |
|
Mutation Site Sentence
|
TABLE |
|
Mutation Level
|
Nucleotide level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
S |
|
Standardized Encoding Gene
|
S
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
NC_045512.2
|
|
Functional Impact and Mechanisms
|
|
Disease
|
COVID-19
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
35707000
|
|
Title
|
Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins
|
|
Author
|
Sia BZ,Boon WX,Yap YY,Kumar S,Ng CH
|
|
Journal
|
F1000Research
|
|
Journal Info
|
2022 Jan 6;11:9
|
|
Abstract
|
Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these mutations on the structure and function of the proteins. Methods: In our study nonsynonymous mutations of the SARS-CoV-2 genome and their frequencies were identified from 30,229 sequences. Subsequently, the effects of the top 10 highest frequency nonsynonymous mutations of different SARS-CoV-2 proteins were analyzed using bioinformatics tools including co-mutation analysis, prediction of the protein structure stability and flexibility analysis, and prediction of the protein functions. Results: A total of 231 nonsynonymous mutations were identified from 30,229 SARS-CoV-2 genome sequences. The top 10 nonsynonymous mutations affecting nine amino acid residues were ORF1a nsp5 P108S, ORF1b nsp12 P323L and A423V, S protein N501Y and D614G, ORF3a Q57H, N protein P151L, R203K and G204R. Many nonsynonymous mutations showed a high concurrence ratio, suggesting these mutations may evolve together and interact functionally. Our result showed that ORF1a nsp5 P108S, ORF3a Q57H and N protein P151L mutations may be deleterious to the function of SARS-CoV-2 proteins. In addition, ORF1a nsp5 P108S and Sprotein D614G may destabilize the protein structures while S protein D614G may have a more open conformation compared to the wild type. Conclusion: The biological consequences of these nonsynonymous mutations of SARS-CoV-2 proteins should be further validated by in vivo and in vitro experimental studies in the future.
|
|
Sequence Data
|
-
|
|
|