|
Basic Characteristics of Mutations
|
|
Mutation Site
|
A355E |
|
Mutation Site Sentence
|
Table 1 |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
RT |
|
Standardized Encoding Gene
|
P
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
AY741797.1
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Hepatitis B Virus Infection
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
Y |
|
Treatment
|
- |
|
Location
|
Germany |
|
Literature Information
|
|
PMID
|
28392234
|
|
Title
|
Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy
|
|
Author
|
Shirvani-Dastgerdi E,Winer BY,Celia-Terrassa T,Kang Y,Tabernero D,Yagmur E,Rodriguez-Frias F,Gregori J,Luedde T,Trautwein C,Ploss A,Tacke F
|
|
Journal
|
Journal of hepatology
|
|
Journal Info
|
2017 Aug;67(2):246-254
|
|
Abstract
|
BACKGROUND & AIMS: Patients chronically infected with the hepatitis B virus (HBV) and receiving long-term treatment with nucleoside or nucleotide analogues are at risk of selecting HBV strains with complex mutational patterns. We herein report two cases of HBV-infected patients with insufficient viral suppression, despite dual antiviral therapy with entecavir (ETV) and tenofovir (TDF). One patient died from aggressive hepatocellular carcinoma (HCC). METHODS: Serum samples from the two patients at different time points were analyzed using ultra-deep pyrosequencing analysis. HBV mutations were identified and transiently transfected into hepatoma cells in vitro using replication-competent HBV vectors, and functionally analyzed. We assessed replication efficacy, resistance to antivirals and potential impact on HBV secretion (viral particles, exosomes). RESULTS: Sequencing analyses revealed the selection of the rtS78T HBV polymerase mutation in both cases that simultaneously creates a premature stop codon at sC69 and thereby deletes almost the entire small HBV surface protein. One of the patients had an additional 261bp deletion in the preS1/S2 region. Functional analyses of the mutations in vitro revealed that the rtS78T/sC69 * mutation, but not the preS1/S2 deletion, significantly enhanced viral replication and conferred reduced susceptibility to ETV and TDF. The sC69 * mutation caused truncation of HBs protein, leading to impaired detection by commercial HBsAg assay, without causing intracellular HBsAg retention or affecting HBV secretion. CONCLUSIONS: The rtS78T/sC69 * HBV mutation, associated with enhanced replication and insufficient response to antiviral treatment, may favor long-term persistence of these isolates. In addition to the increased production of HBV transcripts and the sustained secretion of viral particles in the absence of antigenic domains of S protein, this HBV mutation may predispose patients to carcinogenic effects. LAY SUMMARY: Long-term treatment with antiviral drugs carries the risk of selecting mutations in the hepatitis B virus (HBV). We herein report two cases of patients with insufficient response to dual tenofovir and entecavir therapy. Molecular analyses identified a distinct mutation, rtS78T/sC69 *, that abolishes HBsAg detection, enhances replication, sustains exosome-mediated virion secretion and decreases susceptibility to antivirals, thereby representing a potentially high-risk mutation for HBV-infected individuals.
|
|
Sequence Data
|
-
|
|
|