HCMV Mutation Detail Information

Virus Mutation HCMV Mutation A355T


Basic Characteristics of Mutations
Mutation Site A355T
Mutation Site Sentence Genetic mapping experiments with BDCRB-resistant virus demonstrated that the resistance phenotype mapped to one amino acid (Asp344Glu; low resistance) or two amino acids (Asp344Glu and Ala355Thr; high resistance) within the product of exon 2 of the HCMV U(L)89 open reading frame.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region UL89
Standardized Encoding Gene UL89  
Genotype/Subtype -
Viral Reference AD169
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment BDCRB
Location -
Literature Information
PMID 9420278
Title Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product
Author Underwood MR,Harvey RJ,Stanat SC,Hemphill ML,Miller T,Drach JC,Townsend LB,Biron KK
Journal Journal of virology
Journal Info 1998 Jan;72(1):717-25
Abstract 2-Bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (BDCRB) is a member of a new class of benzimidazole ribonucleosides which inhibit human cytomegalovirus (HCMV) late in the replication cycle without inhibiting viral DNA synthesis. We show here that polygenomic concatemeric HCMV DNA does not mature to unit genome length in the presence of BDCRB. To discover the locus of action, virus resistant to BDCRB was selected by serial passage in the presence of the compound. Genetic mapping experiments with BDCRB-resistant virus demonstrated that the resistance phenotype mapped to one amino acid (Asp344Glu; low resistance) or two amino acids (Asp344Glu and Ala355Thr; high resistance) within the product of exon 2 of the HCMV U(L)89 open reading frame. The HCMV U(L)89 open reading frame and its homologs are among the most conserved open reading frames in the herpesviruses, and their products have sequence similarities to a known ATP-dependent endonuclease from the double-stranded DNA bacteriophage T4. These findings strongly suggest that BDCRB prevents viral DNA maturation by interacting with a U(L)89 gene product and that the U(L)89 open reading frame may encode an endonucleolytic subunit of the putative HCMV terminase. Further, since mammalian cell DNA replication does not involve a DNA maturation step, compounds which inhibit viral DNA maturation should be selective and safe.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.