SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation A54S


Basic Characteristics of Mutations
Mutation Site A54S
Mutation Site Sentence Table 1.Deduced Amino Acid Mutations Detected by Whole Viral Genome Sequencing
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region ORF3a
Standardized Encoding Gene ORF3a  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location Japan
Literature Information
PMID 38348230
Title Emergence of SARS-CoV-2 with Dual-Drug Resistant Mutations During a Long-Term Infection in a Kidney Transplant Recipient
Author Tanino Y,Nishioka K,Yamamoto C,Watanabe Y,Daidoji T,Kawamoto M,Uda S,Kirito S,Nakagawa Y,Kasamatsu Y,Kawahara Y,Sakai Y,Nobori S,Inaba T,Ota B,Fujita N,Hoshino A,Nukui Y,Nakaya T
Journal Infection and drug resistance
Journal Info 2024 Feb 8;17:531-541
Abstract INTRODUCTION: Various therapeutic agents are being developed for the treatment of coronavirus disease 2019 (COVID-19). Therefore, it is crucial to accumulate information regarding the features of drug-resistant viruses to these antiviral drugs. METHODS: We investigated the emergence of dual-drug resistance in a kidney transplant recipient who received sotrovimab (from day 0) and remdesivir (RDV) (from day 8 to day 17). We sequenced the whole viral genomes from nasopharyngeal swabs taken on day 0 and seven points after starting treatment (on days 12, 19, 23, 37, 43, 48, and 58). The genetic traits of the wild-type (day 0) and descendant viruses (after day 12) were determined by comparing the genomes with those of a Wuhan strain and the day 0 wild-type strain, respectively. Three viral isolates (from samples collected on days 0, 23, and 37) were investigated for their escape ability and growth kinetics in vitro. RESULTS: The sotrovimab resistant mutation (S:E340K) and the RDV resistant mutation RdRp:V792I (nt: G15814A) emerged within 12 days (day 12) and 11 days (day 19) after the treatment, respectively. The day 23 isolate harboring S:E340K/RdRp:V791I was resistant to both sotrovimab and RDV, showing 364- and 2.73-fold higher resistance respectively, compared with the wild-type. Moreover, compared with the day 23 isolate, the day 37 isolate accumulated multiple additional mutations and had a higher level of resistance to both drugs. CONCLUSION: Drug-resistant variants with double mutations (S:E340K/RdRp:V791I) became dominant within 23 days after starting treatment, suggesting that even a combination therapy involving sotrovimab and RDV, dual-drug resistant viruses may emerge rapidly in immunocompromised patients. The dual-resistant variants had lower virus yields than those of the wild-type virus in vitro, suggesting that they paid a fitness cost.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.