EBOV Mutation Detail Information

Virus Mutation EBOV Mutation A82V


Basic Characteristics of Mutations
Mutation Site A82V
Mutation Site Sentence In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region GP
Standardized Encoding Gene GP
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene HAVCR1   
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 35384693
Title TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein
Author Zhang M,Wang X,Hu L,Zhang Y,Zheng H,Wu H,Wang J,Luo L,Xiao H,Qiao C,Li X,Huang W,Wang Y,Feng J,Chen G
Journal Microbiology spectrum
Journal Info 2022 Jun 29;10(3):e0221221
Abstract Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Sequence Data AMT75575;A0A068J419
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.