HSV2 Mutation Detail Information

Virus Mutation HSV2 Mutation A869D


Basic Characteristics of Mutations
Mutation Site A869D
Mutation Site Sentence Table 2
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region DNA pol
Standardized Encoding Gene UL30  
Genotype/Subtype -
Viral Reference Z86099.2
Functional Impact and Mechanisms
Disease HSV-2 Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 26338148
Title Resistance testing of clinical herpes simplex virus type 2 isolates collected over 4 decades
Author Bohn-Wippert K,Schmidt S,Runtze A,Zell R,Sauerbrei A
Journal International journal of medical microbiology : IJMM
Journal Info 2015 Oct;305(7):644-51
Abstract There is only little information about the role of mutations of the thymidine kinase (TK) and DNA polymerase (pol) genes of herpes simplex virus type 2 (HSV-2) for the development of antiviral resistance. In this study, the polymorphism of TK and DNA pol genes was examined in 82 clinical isolates collected routinely between 1973 and 2013. If novel, presently unclear or resistance-related mutations were found, the resistance phenotype against acyclovir (ACV) and foscarnet (FOS) was analyzed. The four novel amino acid changes G150D, A157T, R248W, L342W and the hitherto phenotypically unclear substitution T131M within the TK gene were identified as natural polymorphisms. Within the DNA pol gene, 17 novel substitutions and the to-date unclear change R628C were characterized as part of natural gene polymorphism. Two novel DNA pol mutations were linked to resistance (M910T) and weak susceptibility to ACV (684 insertion ED), respectively. In one isolate, the genomic cause of ACV resistance could not be identified. Phylogenetic analysis including sequences of this study and of the GenBank revealed a hierarchy of mutation clusters in TK displaying G39E as first common mutation step, followed by N78D and L140F. In conclusion, the present findings allow a deeper insight in the variability of HSV-2 TK and DNA pol genes. The most common substitution G39E can be excluded as unique cause of HSV-2 resistance. This study supports once more the importance of phenotypic adjustment of genotypic results to enhance the clinical utility of genotypic findings.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.