|
Basic Characteristics of Mutations
|
|
Mutation Site
|
C23271A |
|
Mutation Site Sentence
|
TABLE |
|
Mutation Level
|
Nucleotide level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
S |
|
Standardized Encoding Gene
|
S
|
|
Genotype/Subtype
|
- |
|
Viral Reference
|
NC_045512.2
|
|
Functional Impact and Mechanisms
|
|
Disease
|
COVID-19
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
Uzbekistan |
|
Literature Information
|
|
PMID
|
35759503
|
|
Title
|
Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan
|
|
Author
|
Abdullaev A,Abdurakhimov A,Mirakbarova Z,Ibragimova S,Tsoy V,Nuriddinov S,Dalimova D,Turdikulova S,Abdurakhmonov I
|
|
Journal
|
PloS one
|
|
Journal Info
|
2022 Jun 27;17(6):e0270314
|
|
Abstract
|
Tracking temporal and spatial genomic changes and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are among the most urgent research topics worldwide, which help to elucidate the coronavirus disease 2019 (COVID-19) pathogenesis and the effect of deleterious variants. Our current study concentrates genetic diversity of SARS-CoV-2 variants in Uzbekistan and their associations with COVID-19 severity. Thirty-nine whole genome sequences (WGS) of SARS-CoV-2 isolated from PCR-positive patients from Tashkent, Uzbekistan for the period of July-August 2021, were generated and further subjected to further genomic analysis. Genome-wide annotations of clinical isolates from our study have revealed a total of 223 nucleotide-level variations including SNPs and 34 deletions at different positions throughout the entire genome of SARS-CoV-2. These changes included two novel mutations at the Nonstructural protein (Nsp) 13: A85P and Nsp12: Y479N, which were unreported previously. There were two groups of co-occurred substitution patterns: the missense mutations in the Spike (S): D614G, Open Reading Frame (ORF) 1b: P314L, Nsp3: F924, 5;UTR:C241T; Nsp3:P2046L and Nsp3:P2287S, and the synonymous mutations in the Nsp4:D2907 (C8986T), Nsp6:T3646A and Nsp14:A1918V regions, respectively. The ""Nextstrain"" clustered the largest number of SARS-CoV-2 strains into the Delta clade (n = 32; 82%), followed by two Alpha-originated (n = 4; 10,3%) and 20A (n = 3; 7,7%) clades. Geographically the Delta clade sample sequences were grouped into several clusters with the SARS-CoV genotypes from Russia, Denmark, USA, Egypt and Bangladesh. Phylogenetically, the Delta isolates in our study belong to the two main subclades 21A (56%) and 21J (44%). We found that females were more affected by 21A, whereas males by 21J variant (chi2 = 4.57; p = 0.05, n = 32). The amino acid substitution ORF7a:P45L in the Delta isolates found to be significantly associated with disease severity. In conclusion, this study evidenced that Identified novel substitutions Nsp13: A85P and Nsp12: Y479N, have a destabilizing effect, while missense substitution ORF7a: P45L significantly associated with disease severity.
|
|
Sequence Data
|
-
|
|
|