SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation C3037T


Basic Characteristics of Mutations
Mutation Site C3037T
Mutation Site Sentence Mutations typical of B.1 strains previously reported to have emerged in January 2020 (C3037T, C14408T, and A23403G), were identified in samples collected as early as October 2019 in Lombardy.
Mutation Level Nucleotide level
Mutation Type Synonymous substitution
Gene/Protein/Region NSP3
Standardized Encoding Gene ORF1a  
Genotype/Subtype B.1
Viral Reference NC_045512.2
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location Italy
Literature Information
PMID 36029839
Title Molecular evidence for SARS-CoV-2 in samples collected from patients with morbilliform eruptions since late 2019 in Lombardy, northern Italy
Author Amendola A,Canuti M,Bianchi S,Kumar S,Fappani C,Gori M,Colzani D,Kosakovsky Pond SL,Miura S,Baggieri M,Marchi A,Borghi E,Zuccotti G,Raviglione MC,Magurano F,Tanzi E
Journal Environmental research
Journal Info 2022 Dec;215(Pt 1):113979
Abstract As a reference laboratory for measles and rubella surveillance in Lombardy, we evaluated the association between SARS-CoV-2 infection and measles-like syndromes, providing preliminary evidence for undetected early circulation of SARS-CoV-2. Overall, 435 samples from 156 cases were investigated. RNA from oropharyngeal swabs (N = 148) and urine (N = 141) was screened with four hemi-nested PCRs and molecular evidence for SARS-CoV-2 infection was found in 13 subjects. Two of the positive patients were from the pandemic period (2/12, 16.7%, March 2020-March 2021) and 11 were from the pre-pandemic period (11/44, 25%, August 2019-February 2020). Sera (N = 146) were tested for anti-SARS-CoV-2 IgG, IgM, and IgA antibodies. Five of the RNA-positive individuals also had detectable anti-SARS-CoV-2 antibodies. No strong evidence of infection was found in samples collected between August 2018 and July 2019 from 100 patients. The earliest sample with evidence of SARS-CoV-2 RNA was from September 12, 2019, and the positive patient was also positive for anti-SARS-CoV-2 antibodies (IgG and IgM). Mutations typical of B.1 strains previously reported to have emerged in January 2020 (C3037T, C14408T, and A23403G), were identified in samples collected as early as October 2019 in Lombardy. One of these mutations (C14408T) was also identified among sequences downloaded from public databases that were obtained by others from samples collected in Brazil in November 2019. We conclude that a SARS-CoV-2 progenitor capable of producing a measles-like syndrome may have emerged in late June-late July 2019 and that viruses with mutations characterizing B.1 strain may have been spreading globally before the first Wuhan outbreak. Our findings should be complemented by high-throughput sequencing to obtain additional sequence information. We highlight the importance of retrospective surveillance studies in understanding the early dynamics of COVID-19 spread and we encourage other groups to perform retrospective investigations to seek confirmatory proofs of early SARS-CoV-2 circulation.
Sequence Data MZ223385 - MZ223398
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.