IV Mutation Detail Information

Virus Mutation IV Mutation D141N


Basic Characteristics of Mutations
Mutation Site D141N
Mutation Site Sentence The initial, but not the later R292K isolates reverted to wild-type during egg-propagation, suggesting a stabilization of the mutation, possibly through additional mutations in the neuraminidase (D113N or D141N) or hemagglutinin (E216K).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NA
Standardized Encoding Gene NA
Genotype/Subtype H6N2
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment oseltamivir;zanamivir
Location Sweden
Literature Information
PMID 23951116
Title Resistance mutation R292K is induced in influenza A(H6N2) virus by exposure of infected mallards to low levels of oseltamivir
Author Gillman A,Muradrasoli S,Soderstrom H,Nordh J,Brojer C,Lindberg RH,Latorre-Margalef N,Waldenstrom J,Olsen B,Jarhult JD
Journal PloS one
Journal Info 2013 Aug 12;8(8):e71230
Abstract Resistance to neuraminidase inhibitors (NAIs) is problematic as these drugs constitute the major treatment option for severe influenza. Extensive use of the NAI oseltamivir (Tamiflu(R)) results in up to 865 ng/L of its active metabolite oseltamivir carboxylate (OC) in river water. There one of the natural reservoirs of influenza A, dabbling ducks, can be exposed. We previously demonstrated that an influenza A(H1N1) virus in mallards (Anas platyrhynchos) exposed to 1 microg/L of OC developed oseltamivir resistance through the mutation H274Y (N2-numbering). In this study, we assessed the resistance development in an A(H6N2) virus, which belongs to the phylogenetic N2 group of neuraminidases with distinct functional and resistance characteristics. Mallards were infected with A(H6N2) while exposed to 120 ng/L, 1.2 microg/L or 12 microg/L of OC in their sole water source. After 4 days with 12 microg/L of OC exposure, the resistance mutation R292K emerged and then persisted. Drug sensitivity was decreased approximately 13,000-fold for OC and approximately 7.8-fold for zanamivir. Viral shedding was similar when comparing R292K and wild-type virus indicating sustained replication and transmission. Reduced neuraminidase activity and decrease in recovered virus after propagation in embryonated hen eggs was observed in R292K viruses. The initial, but not the later R292K isolates reverted to wild-type during egg-propagation, suggesting a stabilization of the mutation, possibly through additional mutations in the neuraminidase (D113N or D141N) or hemagglutinin (E216K). Our results indicate a risk for OC resistance development also in a N2 group influenza virus and that exposure to one NAI can result in a decreased sensitivity to other NAIs as well. If established in influenza viruses circulating among wild birds, the resistance could spread to humans via re-assortment or direct transmission. This could potentially cause an oseltamivir-resistant pandemic; a serious health concern as preparedness plans rely heavily on oseltamivir before vaccines can be mass-produced.
Sequence Data JX912288
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.