|
Basic Characteristics of Mutations
|
|
Mutation Site
|
D215Y |
|
Mutation Site Sentence
|
TABLE |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
S |
|
Standardized Encoding Gene
|
S
|
|
Genotype/Subtype
|
BA.2 |
|
Viral Reference
|
MN908947
|
|
Functional Impact and Mechanisms
|
|
Disease
|
COVID-19
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
China |
|
Literature Information
|
|
PMID
|
37789031
|
|
Title
|
Epidemiology and analysis of SARS-CoV-2 Omicron subvariants BA.1 and 2 in Taiwan
|
|
Author
|
Liu LT,Chiou SS,Chen PC,Chen CH,Lin PC,Tsai CY,Chuang WL,Hwang SJ,Chong IW,Tsai JJ
|
|
Journal
|
Scientific reports
|
|
Journal Info
|
2023 Oct 3;13(1):16583
|
|
Abstract
|
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in October 2021, possessed many mutations compared to previous variants. We aimed to identify and analyze SARS-CoV-2 Omicron subvariants among coronavirus disease 2019 (COVID-19) patients between January 2022 and September 2022 in Taiwan. The results revealed that BA.2.3.7, featuring K97E and G1251V in the spike protein compared with BA.2, emerged in March 2022 and persistently dominated between April 2022 and August 2022, resulting in the largest COVID-19 outbreak since 2020. The accumulation of amino acid (AA) variations, mainly AA substitution, in the spike protein was accompanied by increasing severity in Omicron-related COVID-19 between April 2022 and January 2023. Older patients were more likely to have severe COVID-19, and comorbidity was a risk factor for COVID-19-related mortality. The accumulated case fatality rate (CFR) dropped drastically after Omicron variants, mainly BA.2.3.7, entered Taiwan after April 2022, and the CFR was 0.16% in Taiwan, which was lower than that worldwide (0.31%) between April 2021 and January 2023. The relatively low CFR in Omicron-related COVID-19 patients can be attributed to adjustments to public health policies, promotion of vaccination programs, effective antiviral drugs, and the lower severity of the Omicron variant.
|
|
Sequence Data
|
-
|
|
|