IV Mutation Detail Information

Virus Mutation IV Mutation D225E


Basic Characteristics of Mutations
Mutation Site D225E
Mutation Site Sentence This is further confirmed by a D225E mutant that retains human receptor binding specificity with the salt bridge intact.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA
Standardized Encoding Gene HA
Genotype/Subtype H1N1
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 23514882
Title Molecular basis of the receptor binding specificity switch of the hemagglutinins from both the 1918 and 2009 pandemic influenza A viruses by a D225G substitution
Author Zhang W,Shi Y,Qi J,Gao F,Li Q,Fan Z,Yan J,Gao GF
Journal Journal of virology
Journal Info 2013 May;87(10):5949-58
Abstract Influenza A virus uses sialic acids as cell entry receptors, and there are two main receptor forms, alpha2,6 linkage or alpha2,3 linkage to galactose, that determine virus host ranges (mammalian or avian). The receptor binding hemagglutinins (HAs) of both 1918 and 2009 pandemic H1N1 (18H1 and 09H1, respectively) influenza A viruses preferentially bind to the human alpha2,6 linkage receptor. A single D225G mutation in both H1s switches receptor binding specificity from alpha2,6 linkage binding to dual receptor binding. However, the molecular basis for this specificity switch is not fully understood. Here, we show via H1-ligand complex structures that the D225G substitution results in a loss of a salt bridge between amino acids D225 and K222, enabling the key residue Q226 to interact with the avian receptor, thereby obtaining dual receptor binding. This is further confirmed by a D225E mutant that retains human receptor binding specificity with the salt bridge intact.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.