YFV Mutation Detail Information

Virus Mutation YFV Mutation D28G


Basic Characteristics of Mutations
Mutation Site D28G
Mutation Site Sentence NS changes were located in the E (Q27H, D28G, D155A, K323R and K331R) and NS2A (T48A) proteins.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region E
Standardized Encoding Gene envelope
Genotype/Subtype -
Viral Reference AY640589
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 29593212
Title Molecular determinants of Yellow Fever Virus pathogenicity in Syrian Golden Hamsters: one mutation away from virulence
Author Klitting R,Roth L,Rey FA,de Lamballerie X
Journal Emerging microbes & infections
Journal Info 2018 Mar 29;7(1):51
Abstract Yellow fever virus (Flavivirus genus) is an arthropod-borne pathogen, which can infect humans, causing a severe viscerotropic disease with a high mortality rate. Adapted viral strains allow the reproduction of yellow fever disease in hamsters with features similar to the human disease. Here, we used the Infectious Subgenomic Amplicons reverse genetics method to produce an equivalent to the hamster-virulent strain, Yellow Fever Ap7, by introducing a set of four synonymous and six nonsynonymous mutations into a single subgenomic amplicon, derived from the sequence of the Asibi strain. The resulting strain, Yellow Fever Ap7M, induced a disease similar to that described for Ap7 in terms of symptoms, weight evolution, viral loads in the liver and lethality. Using the same methodology, we produced mutant strains derived from either Ap7M or Asibi viruses and investigated the role of each of Ap7M nonsynonymous mutations in its in vivo phenotype. This allowed identifying key components of the virulence mechanism in hamsters. In Ap7M virus, the reversion of either E/Q27H or E/D155A mutations led to an important reduction of both virulence and in vivo replicative fitness. In addition, the introduction of the single D155A Ap7M mutation within the E protein of the Asibi virus was sufficient to drastically modify its phenotype in hamsters toward both a greater replication efficiency and virulence. Finally, inspection of the Asibi strain E protein structure combined to in vivo testing revealed the importance of an exposed alpha-helix in domain I, containing residues 154 and 155, for Ap7M virulence in hamsters.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.