HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation D368A


Basic Characteristics of Mutations
Mutation Site D368A
Mutation Site Sentence The D368A mutation within the 3'-5'-exonuclease domain of the herpes simplex type 1 DNA polymerase inactivates this nuclease and severely interferes with virus viability.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Pol
Standardized Encoding Gene UL30  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Herpes simplex    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 9727026
Title Impaired mismatch extension by a herpes simplex DNA polymerase mutant with an editing nuclease defect
Author Baker RO,Hall JD
Journal The Journal of biological chemistry
Journal Info 1998 Sep 11;273(37):24075-82
Abstract The D368A mutation within the 3'-5'-exonuclease domain of the herpes simplex type 1 DNA polymerase inactivates this nuclease and severely interferes with virus viability. Compared with the wild type enzyme, the D368A mutant exhibits substantially elevated rates of incorrect nucleotide incorporation, as measured in a LacZ reversion assay. This high rate occurs in the presence of high levels of dNTPs, a condition that forces the enzyme to extend mismatched primers. Hence, the mutant fails to correct many misincorporations that are removed in the wild type. In addition, the mutant shows a much reduced ability to replicate DNA templates primed with a 3'-mismatch as compared with wild type. This extension defect also appears more severe than observed for replicases which naturally lack editing nucleases. Based on these findings, we suggest that the inability of the D368A herpes simplex mutant polymerase to replicate beyond a mismatched base pair severely inhibits viral replication.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.