SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence It is noteworthy that there is an amino acid D614G mutation caused by nt23403 substitution in all six genomes,which may enhance the virus's infectivity in humans and help it become the leading strain of the virus to spread around the world today.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype L
Viral Reference NC_045512
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location China
Literature Information
PMID 32895643
Title Genomic characterization of SARS-CoV-2 identified in a reemerging COVID-19 outbreak in Beijing's Xinfadi market in 2020
Author Zhang Y,Pan Y,Zhao X,Shi W,Chen Z,Zhang S,Liu P,Xiao J,Tan W,Wang D,Liu WJ,Xu W,Wang Q,Wu G
Journal Biosafety and health
Journal Info 2020 Dec;2(4):202-205
Abstract After 56 days without coronavirus disease 2019 (COVID-19) cases, reemergent cases were reported in Beijing, China on June 11, 2020. Here, we report the genetic characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequenced from the clinical specimens of 4 human cases and 2 environmental samples. The nucleotide similarity among six SARS-CoV-2 genomes ranged from 99.98% to 99.99%. Compared with the reference strain of SARS-CoV-2 (GenBank No. NC_045512), all six genome sequences shared the same substitutions at nt241 (C --> T), nt3037 (C --> T), nt14408 (C --> T), nt23403 (A --> G), nt28881 (G --> A), nt28882 (G --> A), and nt28883 (G --> C), which are the characteristic nucleotide substitutions of L-lineage European branch I. This was also proved by the maximum likelihood phylogenetic tree based on the full-length genome of SARS-CoV-2. They also have a unique shared nucleotide substitution, nt6026 (C --> T), which is the characteristic nucleotide substitution of SARS-CoV-2 in Beijing's Xinfadi outbreak. It is noteworthy that there is an amino acid D614G mutation caused by nt23403 substitution in all six genomes, which may enhance the virus's infectivity in humans and help it become the leading strain of the virus to spread around the world today. It is necessary to continuously monitor the genetic variation of SARS-CoV-2, focusing on the influence of key mutation sites of SARS-CoV-2 on viral transmission, clinical manifestations, severity, and course of disease.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.