SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence Our analysis of 1000 S protein sequences from field isolates collected globally over the past few months identified three recurrent point mutations including L5F,D614G and G1124V.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference MN908947
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 33301503
Title CD8 T cell epitope generation toward the continually mutating SARS-CoV-2 spike protein in genetically diverse human population: Implications for disease control and prevention
Author Guo E,Guo H
Journal PloS one
Journal Info 2020 Dec 10;15(12):e0239566
Abstract The ongoing pandemic of SARS-CoV-2 has brought tremendous crisis on global health care systems and industrial operations that dramatically affect the economic and social life of numerous individuals worldwide. Understanding anti-SARS-CoV-2 immune responses in population with different genetic backgrounds and tracking the viral evolution are crucial for successful vaccine design. In this study, we reported the generation of CD8 T cell epitopes by a total of 80 alleles of three major class I HLAs using NetMHC 4.0 algorithm for the SARS-CoV-2 spike protein, which can be targeted by both B cells and T cells. We found diverse capacities of S protein specific epitope presentation by different HLA alleles with very limited number of predicted epitopes for HLA-B*2705, HLA-B*4402 and HLA-B*4403 and as high as 132 epitopes for HLA-A*6601. Our analysis of 1000 S protein sequences from field isolates collected globally over the past few months identified three recurrent point mutations including L5F, D614G and G1124V. Differential effects of these mutations on CD8 T cell epitope generation by corresponding HLA alleles were observed. Finally, our multiple alignment analysis indicated the absence of seasonal CoV induced cross-reactive CD8 T cells to drive these mutations. Our findings suggested that individuals with certain HLA alleles, such as B*44 are more prone to SARS-CoV-2 infection. Studying anti-S protein specific CD8 T cell immunity in diverse genetic background is critical for better control and prevention of the SARS-CoV-2 pandemic.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.