SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence Genomic surveillance showed near-simultaneous introduction of distinct SARS-CoV-2 lineages termed A.4 and B.1; including the D614G spike protein variant potentially associated with higher transmissibility from travelers from six different European and African countries during March-April 2020.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B.1
Viral Reference MN908947
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Benin
Literature Information
PMID 33441410
Title An Observational Laboratory-Based Assessment of SARS-CoV-2 Molecular Diagnostics in Benin, Western Africa
Author Sander AL,Yadouleton A,Moreira-Soto A,Tchibozo C,Hounkanrin G,Badou Y,Fischer C,Krause N,Akogbeto P,F de Oliveira Filho E,Dossou A,Brunink S,Drosten C,Aissi MAJ,Harouna Djingarey M,Hounkpatin B,Nagel M,Drexler JF
Journal mSphere
Journal Info 2021 Jan 13;6(1):e00979-20
Abstract Information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread in Africa is limited by insufficient diagnostic capacity. Here, we assessed the coronavirus disease (COVID-19)-related diagnostic workload during the onset of the pandemic in the central laboratory of Benin, Western Africa; characterized 12 SARS-CoV-2 genomes from returning travelers; and validated the Da An RT-PCR-based diagnostic kit that is widely used across Africa. We found a 15-fold increase in the monthly laboratory workload due to COVID-19, dealt with at the cost of routine activities. Genomic surveillance showed near-simultaneous introduction of distinct SARS-CoV-2 lineages termed A.4 and B.1, including the D614G spike protein variant potentially associated with higher transmissibility from travelers from six different European and African countries during March-April 2020. We decoded the target regions within the ORF1ab and N genes of the Da An dual-target kit by MinION-based amplicon sequencing. Despite relatively high similarity between SARS-CoV-2 and endemic human coronaviruses (HCoVs) within the ORF1ab target domain, no cross-detection of high-titered cell culture supernatants of HCoVs was observed, suggesting high analytical specificity. The Da An kit was highly sensitive, detecting 3.2 to 9.0 copies of target-specific in vitro transcripts/reaction. Although discrepant test results were observed in low-titered clinical samples, clinical sensitivity of the Da An kit was at least comparable to that of commercial kits from affluent settings. In sum, virologic diagnostics are achievable in a resource-limited setting, but unprecedented pressure resulting from COVID-19-related diagnostics requires rapid and sustainable support of national and supranational stakeholders addressing limited laboratory capacity.IMPORTANCE Months after the start of the COVID-19 pandemic, case numbers from Africa are surprisingly low, potentially because the number of SARS-CoV-2 tests performed in Africa is lower than in other regions. Here, we show an overload of COVID-19-related diagnostics in the central laboratory of Benin, Western Africa, with a stagnating average number of positive samples irrespective of daily sample counts. SARS-CoV-2 genomic surveillance confirmed a high genomic diversity in Benin introduced by travelers returning from Europe and other African countries, including early circulation of the D614G spike mutation associated with potentially higher transmissibility. We validated a widely used RT-PCR kit donated by the Chinese Jack Ma Foundation and confirmed high analytical specificity and clinical sensitivity equivalent to tests used in affluent settings. Our assessment shows that although achievable in an African setting, the burden from COVID-19-related diagnostics on national reference laboratories is very high.
Sequence Data EPI_ISL_476822 to EPI_ISL_476831;EPI_ISL_476833 to EPI_ISL_476834).
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.