SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence Live-virus neutralization assay revealed that after one year,variants D614G and B.1.1.7,but less so B.1.351,were sensitive to anti-RBD antibodies at 1.4 log BAU/mL,while IgG >= 2.0 log BAU/mL strongly neutralized all three variants.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region
Standardized Encoding Gene
Genotype/Subtype B.1.1.7
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location France
Literature Information
PMID 34455390
Title Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection
Author Gallais F,Gantner P,Bruel T,Velay A,Planas D,Wendling MJ,Bayer S,Solis M,Laugel E,Reix N,Schneider A,Glady L,Panaget B,Collongues N,Partisani M,Lessinger JM,Fontanet A,Rey D,Hansmann Y,Kling-Pillitteri L,Schwartz O,De Seze J,Meyer N,Gonzalez M,Schmidt-Mutter C,Fafi-Kremer S
Journal EBioMedicine
Journal Info 2021 Sep;71:103561
Abstract BACKGROUND: Assessment of the kinetics of SARS-CoV-2 antibodies is essential in predicting risk of reinfection and durability of vaccine protection. METHODS: This is a prospective, monocentric, longitudinal, cohort clinical study. Healthcare workers (HCW) from Strasbourg University Hospital were enrolled between April 6th and May 7th, 2020 and followed up to 422 days. Serial serum samples were tested for antibodies against the Receptor Binding Domain (RBD) of the spike protein and nucleocapsid protein (N) to characterize the kinetics of SARS-CoV-2 antibodies and the incidence of reinfection. Live-neutralization assays were performed for a subset of samples before and after vaccination to analyze sensitivity to SARS-CoV-2 variants. FINDINGS: A total of 4290 samples from 393 convalescent COVID-19 and 916 COVID-19 negative individuals were analyzed. In convalescent individuals, SARS-CoV-2 antibodies followed a triphasic kinetic model with half-lives at month (M) 11-13 of 283 days (95% CI 231-349) for anti-N and 725 days (95% CI 623-921) for anti-RBD IgG, which stabilized at a median of 1.54 log BAU/mL (95% CI 1.42-1.67). The incidence of SARS-CoV-2 infections was 12.22 and 0.40 per 100 person-years in COVID-19-negative and COVID-19-positive HCW, respectively, indicating a relative reduction in the incidence of SARS-CoV-2 reinfection of 96.7%. Live-virus neutralization assay revealed that after one year, variants D614G and B.1.1.7, but less so B.1.351, were sensitive to anti-RBD antibodies at 1.4 log BAU/mL, while IgG >/= 2.0 log BAU/mL strongly neutralized all three variants. These latter anti-RBD IgG titers were reached by all vaccinated HCW regardless of pre-vaccination IgG levels and type of vaccine. INTERPRETATION: Our study demonstrates a long-term persistence of anti-RBD antibodies that may reduce risk of reinfection. By significantly increasing cross-neutralizing antibody titers, a single-dose vaccination strengthens protection against variants. FUN1DING: None.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.