SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype Original strain
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location Malawian
Literature Information
PMID 35346184
Title AstraZeneca COVID-19 vaccine induces robust broadly cross-reactive antibody responses in Malawian adults previously infected with SARS-CoV-2
Author Chibwana MG,Moyo-Gwete T,Kwatra G,Mandolo J,Hermanaus T,Motlou T,Mzindle N,Ayres F,Chaponda M,Tembo G,Mwenechanya P,Mitole N,Jassi C,Kamng'ona R,Afran L,Mzinza D,Mwandumba HC,Gordon SB,Jere K,Madhi S,Moore PL,Heyderman RS,Jambo KC
Journal BMC medicine
Journal Info 2022 Mar 28;20(1):128
Abstract BACKGROUND: Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. METHODS: Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days (n = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) (n = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Sidak's or Holm-Sidak's test. RESULTS: We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30-60 days vs. 210-270 days; Log ID(50) 6.8 vs. 5.3, p = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain (p < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. CONCLUSIONS: These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.