SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation D614G


Basic Characteristics of Mutations
Mutation Site D614G
Mutation Site Sentence The D614G mutation identified in late January became dominant during March 2020, rendering SARS-CoV-2 more infectious.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype BA.1
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 36108974
Title SARS-CoV-2 genetic diversity: Its impact on vaccine efficacy
Author Lina B,Bauer J
Journal Infectious diseases now
Journal Info 2022 Nov;52(8S):S2-S3
Abstract SARS CoV 2 S-glycoproteins play a crucial role in the entry steps of viral particles. Due to their surface location, they are the main target for host immune responses and the focus of most vaccine strategies. The D614G mutation identified in late January became dominant during March 2020, rendering SARS-CoV-2 more infectious. In April 2020, the Alpha, Beta and Gamma variants emerged simultaneously in Asia, South Africa, and South America, respectively. They were 1.6 to 2 times more transmissible than the ancestral strain. The currently dominant Omicron variant (BA.2) is not a direct descendant from the D614G lineage, but rather emerged from the BA.1 variant (as did BA.4 and BA.5). It is substantially different from all the other variants. It presents significantly reduced susceptibility to antibody neutralization: after 2 doses of mRNA-vaccine, neutralizing titers to Omicron are 41 to 84 times lower than neutralization titers to D614G. That said, a booster dose of mRNA-vaccine increases Omicron neutralization titers and reduces the risk of severe infection.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.