IV Mutation Detail Information

Virus Mutation IV Mutation D701N


Basic Characteristics of Mutations
Mutation Site D701N
Mutation Site Sentence Table 2
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PB2
Standardized Encoding Gene PB2
Genotype/Subtype H11N9
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location China
Literature Information
PMID 27268229
Title Detection of reassortant avian influenza A (H11N9) virus in environmental samples from live poultry markets in China
Author Zhang Y,Zou SM,Li XD,Dong LB,Bo H,Gao RB,Wang DY,Shu YL
Journal Infectious diseases of poverty
Journal Info 2016 Jun 8;5(1):59
Abstract BACKGROUND: Avian influenza viruses have caused human infection and posed the pandemic potential. Live poultry markets are considered as a source of human infection with avian influenza viruses. Avian influenza routine surveillance of live poultry markets is taken annually in China. We isolated the 2 H11N9 influenza virus from the surveillance program. To better understand the risk caused by these new viruses, we characterize the genetic and pathogenicity of the two viruses. METHODS: Viral isolation was conducted with specific pathogen-free (SPF) embryonated chicken eggs. Whole genome was sequenced, and phylogenetic analysis was conducted. RESULTS: Two H11N9 viruses were identified, with all 8 segments belonging to the Eurasian lineage. The HA, NA, M, NS and PA genes were similar to virus isolates from ducks, and the NP, PB2 and PB1 gene segments were most similar to those viruses from wild birds, indicating that the H11N9 viruses might represent reassortant viruses from poultry and wild birds. The HA receptor binding preference was avian-like, and the cleavage site sequence of HA showed low pathogenic. The NA gene showed 94.6 % identity with the novel H7N9 virus that emerged in 2013. There was no drug resistance mutation in the M2 protein. The Asn30Asp and Thr215Ala substitutions in the M1 protein implied a potentially increased pathogenicity in mice. Both viruses were low-pathogenic strains, as assessed by the standards of intravenous pathogenicity index (IVPI) tests. CONCLUSION: Two reassortant H11N9 avian influenza viruses were detected. These viruses showed low pathogenicity to chickens in the IVPI test. Public health concern caused by the reassortant H11N9 viruses should be emphasized during the future surveillance.
Sequence Data KC881287-KC881302
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.