IV Mutation Detail Information

Virus Mutation IV Mutation E119V


Basic Characteristics of Mutations
Mutation Site E119V
Mutation Site Sentence Structural Investigations and Binding Mechanisms of Oseltamivir Drug Resistance Conferred by the E119V Mutation in Influenza H7N9 Virus.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NA
Standardized Encoding Gene NA
Genotype/Subtype H7N9
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment oseltamivir
Location -
Literature Information
PMID 35889251
Title Structural Investigations and Binding Mechanisms of Oseltamivir Drug Resistance Conferred by the E119V Mutation in Influenza H7N9 Virus
Author Ugbaja SC,Mtambo SE,Mushebenge AG,Appiah-Kubi P,Abubakar BH,Ntuli ML,Kumalo HM
Journal Molecules (Basel, Switzerland)
Journal Info 2022 Jul 8;27(14):4376
Abstract The use of vaccinations and antiviral medications have gained popularity in the therapeutic management of avian influenza H7N9 virus lately. Antiviral medicines are more popular due to being readily available. The presence of the neuraminidase protein in the avian influenza H7N9 virus and its critical role in the cleavage of sialic acid have made it a target drug in the development of influenza virus drugs. Generally, the neuraminidase proteins have common conserved amino acid residues and any mutation that occurs around or within these conserved residues affects the susceptibility and replicability of the influenza H7N9 virus. Herein, we investigated the interatomic and intermolecular dynamic impacts of the experimentally reported E119V mutation on the oseltamivir resistance of the influenza H7N9 virus. We extensively employed molecular dynamic (MD) simulations and subsequent post-MD analyses to investigate the binding mechanisms of oseltamivir-neuraminidase wildtype and E119V mutant complexes. The results revealed that the oseltamivir-wildtype complex was more thermodynamically stable than the oseltamivir-E119V mutant complex. Oseltamivir exhibited a greater binding affinity for wildtype (-15.46 +/- 0.23 kcal/mol) relative to the E119V mutant (-11.72 +/- 0.21 kcal/mol). The decrease in binding affinity (-3.74 kcal/mol) was consistent with RMSD, RMSF, SASA, PCA, and hydrogen bonding profiles, confirming that the E119V mutation conferred lower conformational stability and weaker protein-ligand interactions. The findings of this oseltamivir-E119V mutation may further assist in the design of compounds to overcome E119V mutation in the treatment of influenza H7N9 virus patients.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.