HBV Mutation Detail Information

Virus Mutation HBV Mutation E164V


Basic Characteristics of Mutations
Mutation Site E164V
Mutation Site Sentence We found that these mutations, either alone or in combination of doubles, do not affect Lenvervimab binding with the exceptions of E164A/D/G/V (Fig 6).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32790777
Title A recombinant human immunoglobulin with coherent avidity to hepatitis B virus surface antigens of various viral genotypes and clinical mutants
Author Jeong GU,Ahn BY,Jung J,Kim H,Kim TH,Kim W,Lee A,Lee K,Kim JH
Journal PloS one
Journal Info 2020 Aug 13;15(8):e0236704
Abstract The hepatitis B virus (HBV) envelope is composed of a lipid bilayer and three glycoproteins, referred to as the large (L), middle (M), and small (S) hepatitis B virus surface antigens (HBsAg). S protein constitutes the major portion of the viral envelope and an even greater proportion of subviral particles (SVP) that circulate in the blood. Recombinant S proteins are currently used as a preventive vaccine, while plasma fractions isolated from vaccinated people, referred to as hepatitis B immune globulin (HBIG), are used for short-term prophylaxis. Here, we characterized a recombinant human IgG1 type anti-S antibody named Lenvervimab regarding its binding property to a variety of cloned S antigens. Immunochemical data showed an overall consistent avidity of the antibody to S antigens of most viral genotypes distributed worldwide. Further, antibody binding was not affected by the mutations in the antigenic 'a' determinant found in many clinical variants, including the immune escape mutant G145R. In addition, mutations in the S gene sequence that confer drug resistance to the viral polymerase did not interfere with the antibody binding. These results support for a preventive use of the antibody against HBV infection.
Sequence Data AB091259;V01460;V00867;DQ141618;KJ958446;KC774445;JN257193;JQ514480;FR821991;HE652720;FJ692527;FN547205;HM348689;GU815717;DQ020003;AY233280;AY738142;FJ023664;FJ023660;AB486012;EU410082;JN980286;DQ412135
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.