SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation E166V


Basic Characteristics of Mutations
Mutation Site E166V
Mutation Site Sentence Specifically, the E166N, E166R, E166V, S144A, and H163A mutations significantly reduce the binding affinity and inhibitory effectiveness of Bofutrelvir due to disrupted hydrogen bonds, altered binding site stability, and reduced enzyme activity.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Mpro
Standardized Encoding Gene ORF1a  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 40133408
Title Inhibitory efficacy and structural insights of Bofutrelvir against SARS-CoV-2 M(pro) mutants and MERS-CoV M(pro)
Author Wang W,Zhou X,Li W,Zeng P,Guo L,Wang Q,Li J
Journal Communications biology
Journal Info 2025 Mar 25;8(1):493
Abstract The COVID-19 pandemic has caused significant global health and economic disruption. Mutations E166N, E166R, E166N, S144A and His163A in the SARS-CoV-2 main protease (M(pro)) have been implicated in reducing the efficacy of certain antiviral treatments. Bofutrelvir, a promising inhibitor, has shown effectiveness against SARS-CoV-2 M(pro). This study aims to evaluate the inhibitory effects of Bofutrelvir on the E166N, E166R, His163A, E166V and S144A mutants of SARS-CoV-2 M(pro), as well as on MERS-CoV M(pro). Our findings indicate a substantial reduction in the inhibitory potency of Bofutrelvir against these mutants and MERS-CoV, with IC(50) values significantly higher than those for the wild-type SARS-CoV-2 M(pro). Specifically, the E166N, E166R, E166V, S144A, and H163A mutations significantly reduce the binding affinity and inhibitory effectiveness of Bofutrelvir due to disrupted hydrogen bonds, altered binding site stability, and reduced enzyme activity. Structural analysis of the crystal complexes showed that changes in interactions at the S1 subsite in the mutants and the loss of hydrogen bonds at the S4 subsite in MERS-CoV M(pro) are critical factors contributing to the diminished inhibitory activity. These insights reveal the necessity of ongoing structural analysis to adapt therapeutic strategies.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.