IV Mutation Detail Information

Virus Mutation IV Mutation E190G


Basic Characteristics of Mutations
Mutation Site E190G
Mutation Site Sentence Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA
Standardized Encoding Gene HA
Genotype/Subtype H5N1
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Vietnam
Literature Information
PMID 26089289
Title Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice
Author Han P,Hu Y,Sun W,Zhang S,Li Y,Wu X,Yang Y,Zhu Q,Jiang T,Li J,Qin C
Journal Journal of medical virology
Journal Info 2015 Nov;87(11):1816-22
Abstract The highly pathogenic H5N1 avian influenza virus is one of the greatest influenza pandemic threats since 2003. The association of the receptor binding domain (RBD) with the virulence of influenza virus is rarely addressed, particularly of H5N1 influenza viruses. In this study, BALB/c mice were intranasally infected with A/Vietnam/1194/2004 (VN1194, H5N1). The mouse lung-adapted variants were isolated and the mutation of E190G (H3 numbering) in the RBD was recognized. The recombinant virus, rVN-E190G carrying E190G in hemagglutinin (HA) was designed and rescued using reverse genetics techniques. The receptor binding activity, growth curve and pathogenicity in mice of the rVN-E190G were investigated. Results demonstrated that rVN-E190G virus increased the binding avidity to alpha2,6 SA (sialic acid) and reduced the affinity to alpha2,3 SA, meanwhile weakened the viral replication in vitro. Moreover, the virulence assessment demonstrated that rVN-E190G was attenuated in mice. These results indicated that the mutation E190G in HA decreases H5N1 viral replication in vitro and significantly attenuates virulence in vivo. These findings identify one of the determinants in RBD which can be associated with H5N1 virulence in mice.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.