|
Basic Characteristics of Mutations
|
|
Mutation Site
|
E345K |
|
Mutation Site Sentence
|
Dengue type four viruses with E-Glu345Lys adaptive mutation from MRC-5 cells induce low viremia but elicit potent neutralizing antibodies in rhesus monkeys |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
E |
|
Standardized Encoding Gene
|
Envelope
|
|
Genotype/Subtype
|
DENV-4 |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Cell line
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
China |
|
Literature Information
|
|
PMID
|
24959738
|
|
Title
|
Dengue type four viruses with E-Glu345Lys adaptive mutation from MRC-5 cells induce low viremia but elicit potent neutralizing antibodies in rhesus monkeys
|
|
Author
|
Lin HH,Lee HC,Li XF,Tsai MJ,Hsiao HJ,Peng JG,Sue SC,Qin CF,Wu SC
|
|
Journal
|
PloS one
|
|
Journal Info
|
2014 Jun 24;9(6):e100130
|
|
Abstract
|
Knowledge of virulence and immunogenicity is important for development of live-attenuated dengue vaccines. We previously reported that an infectious clone-derived dengue type 4 virus (DENV-4) passaged in MRC-5 cells acquired a Glu345Lys (E-E345K) substitution in the E protein domain III (E-DIII). The same cloned DENV-4 was found to yield a single E-Glu327Gly (E-E327G) mutation after passage in FRhL cells and cause the loss of immunogenicity in rhesus monkeys. Here, we used site-directed mutagenesis to generate the E-E345K and E-E327G mutants from DENV-4 and DENV-4Delta30 infectious clones and propagated in Vero or MRC-5 cells. The E-E345K mutations were consistently presented in viruses recovered from MRC-5 cells, but not Vero cells. Recombinant E-DIII proteins of E345K and E327G increased heparin binding correlated with the reduced infectivity by heparin treatment in cell cultures. Different from the E-E327G mutant viruses to lose the immunogencity in rhesus monkeys, the E-E345K mutant viruses were able to induce neutralizing antibodies in rhesus monkeys with an almost a 10-fold lower level of viremia as compared to the wild type virus. Monkeys immunized with the E-E345K mutant virus were completely protected with no detectable viremia after live virus challenges with the wild type DENV-4. These results suggest that the E-E345K mutant virus propagated in MRC-5 cells may have potential for the use in live-attenuated DENV vaccine development.
|
|
Sequence Data
|
-
|