SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation E484D


Basic Characteristics of Mutations
Mutation Site E484D
Mutation Site Sentence Host cell lectins ASGR1 and DC-SIGN jointly with TMEM106B confer ACE2 independence and imdevimab resistance to SARS-CoV-2 pseudovirus with spike mutation E484D.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment imdevimab;bebtelovimab
Location -
Literature Information
PMID 39791910
Title Host cell lectins ASGR1 and DC-SIGN jointly with TMEM106B confer ACE2 independence and imdevimab resistance to SARS-CoV-2 pseudovirus with spike mutation E484D
Author Arora P,Zhang L,Nehlmeier I,Kempf A,Graichen L,Kreitz E,Sidarovich A,Rocha C,Gartner S,Winkler M,Schulz S,Jack H-M,Hoffmann M,Pohlmann S
Journal Journal of virology
Journal Info 2025 Feb 25;99(2):e0123024
Abstract The naturally occurring mutation E484D in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can render viral entry ACE2 independent and imdevimab resistant. Here, we investigated whether the cellular proteins ASGR1, DC-SIGN, and TMEM106B, which interact with the viral S protein, can contribute to these processes. Employing S protein-pseudotyped particles, we found that expression of ASGR1 or DC-SIGN jointly with TMEM106B allowed for robust entry of mutant E484D into otherwise non-susceptible cells, while this effect was not observed upon separate expression of the single proteins and upon infection with SARS-CoV-2 wild type (WT). Furthermore, expression of ASGR1 or DC-SIGN conferred ACE2 independence and imdevimab resistance to entry of mutant E484D but not WT, and entry under those conditions was dependent on endogenous TMEM106B. These results suggest that engagement of certain cellular lectins can direct SARS-CoV-2 mutant E484D to an ACE2-independent, TMEM106B-dependent entry pathway that is not inhibited by imdevimab.IMPORTANCEThe interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with the ACE2 receptor determines the viral cell tropism and is the key target of the neutralizing antibody response. Here, we show that SARS-CoV-2 with a single, naturally occurring mutation in the spike protein, E484D, can use the cellular lectins ASGR1 and DC-SIGN in conjunction with TMEM106B for ACE2-independent entry and evasion of therapeutic antibodies. These results suggest that engagement of cellular lectins might modulate target cell choice of SARS-CoV-2 and might allow evasion of certain neutralizing antibodies.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.