HBV Mutation Detail Information

Virus Mutation HBV Mutation F134V


Basic Characteristics of Mutations
Mutation Site F134V
Mutation Site Sentence The mutations in the ‘‘a” determinant region included; K122R, T123S, T125M, T126S, P127T, P127L, A128D, Q129P, Q129R, N131T, F134Y, F134L, F134V and P135H in the first loop of ‘‘a” determinant and the rest of substitutions including T140G, T140S, T143S, T143M, D144G occurred in the second loop of ‘‘a” determinant.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype A
Viral Reference GQ183486
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location Kenya
Literature Information
PMID 37963165
Title Genetic diversity, haplotype analysis, and prevalence of Hepatitis B virus MHR mutations among isolates from Kenyan blood donors
Author Langat BK,Ochwedo KO,Borlang J,Osiowy C,Mutai A,Okoth F,Muge E,Andonov A,Maritim ES
Journal PloS one
Journal Info 2023 Nov 14;18(11):e0291378
Abstract BACKGROUND: The rapid spread of HBV has resulted in the emergence of new variants. These viral genotypes and variants, in addition to carcinogenic risk, can be key predictors of therapy response and outcomes. As a result, a better knowledge of these emerging HBV traits will aid in the development of a treatment for HBV infection. However, many Sub-Saharan African nations, including Kenya, have insufficient molecular data on HBV strains circulating locally. This study conducted a population-genetics analysis to evaluate the genetic diversity of HBV among Kenyan blood donors. In addition, within the same cohort, the incidence and features of immune-associated escape mutations and stop-codons in Hepatitis B surface antigen (HBsAg) were determined. METHODS: In September 2015 to October 2016, 194 serum samples were obtained from HBsAg-positive blood donors residing in eleven different Kenyan counties: Kisumu, Machakos, Uasin Gishu, Nairobi, Nakuru, Embu, Garissa, Kisii, Mombasa, Nyeri, and Turkana. For the HBV surface (S) gene, HBV DNA was isolated, amplified, and sequenced. The sequences obtained were utilized to investigate the genetic and haplotype diversity within the S genes. RESULTS: Among the blood donors, 74.74% were male, and the overall mean age was 25.36 years. HBV genotype A1 (88.14%) was the most common, followed by genotype D (10.82%), genotype C (0.52%), and HBV genotype E (0.52%). The phylogenetic analysis revealed twelve major clades, with cluster III comprising solely of 68 blood donor isolates (68/194-35.05%). A high haplotype diversity (Hd = 0.94) and low nucleotide diversity (pi = 0.02) were observed. Kisumu county had high number of haplotypes (22), but low haplotype (gene) diversity (Hd = 0.90). Generally, a total of 90 haplotypes with some consisting of more than one sequence were observed. The gene exhibited negative values for Tajima's D (-2.04, p<0.05) and Fu's Fs (-88.84). Several mutations were found in 139 isolates, either within or outside the Major Hydrophilic Area (MHR). There were 29 mutations found, with 37.9% of them situated inside the ""a"" determinant. The most common mutations in this research were T143M and K122R. Escape mutations linked to diagnostic failure, vaccination and immunoglobulin treatment evasion were also discovered. Also, one stop-codon, W163STP, inside the MHR, was found in one sample from genotype A. CONCLUSION: In Kenya, HBV/A1 is still the most common genotype. Despite limited genetic and nucleotide diversity, haplotype network analysis revealed haplotype variance among HBV genotypes from Kenyan blood donors. The virological properties of immune escape, which may be the source of viral replication endurance, were discovered in the viral strains studied and included immune-escape mutations and stop-codon. The discovery of HBsAg mutations in MHR in all isolates highlighted the need of monitoring MHR mutations in Kenya.
Sequence Data ON832834–833075
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.