HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation F195L


Basic Characteristics of Mutations
Mutation Site F195L
Mutation Site Sentence Here we show that Val193Glu and Phe195Leu substitutions in the PP1 signature motif of the gamma(1)34.5 protein abolished its ability to redirect PP1 to dephosphorylate eIF-2alpha and replication of mutant viruses was severely impaired.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region ICP34.5
Standardized Encoding Gene RL1  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 11264356
Title AlaArg motif in the carboxyl terminus of the gamma(1)34.5 protein of herpes simplex virus type 1 is required for the formation of a high-molecular-weight complex that dephosphorylates eIF-2alpha
Author Cheng G,Gross M,Brett ME,He B
Journal Journal of virology
Journal Info 2001 Apr;75(8):3666-74
Abstract The gamma(1)34.5 protein of herpes simplex virus (HSV) type 1 functions to prevent the shutoff of protein synthesis mediated by the double-stranded-RNA-dependent protein kinase PKR. This is because gamma(1)34.5 associates with protein phosphatase 1 (PP1) through its carboxyl terminus, forming a high-molecular-weight complex that dephosphorylates the alpha subunit of translation initiation factor eIF-2 (eIF-2alpha). Here we show that Val193Glu and Phe195Leu substitutions in the PP1 signature motif of the gamma(1)34.5 protein abolished its ability to redirect PP1 to dephosphorylate eIF-2alpha and replication of mutant viruses was severely impaired. The gamma(1)34.5 protein, when expressed in Sf9 cells using a recombinant baculovirus, was capable of directing specific eIF-2alpha dephosphorylation. Deletions of amino acids 258 to 263 had no effect on activity of gamma(1)34.5. However, deletions of amino acids 238 to 258 abolished eIF-2alpha phosphatase activity but not PP1 binding activity. Interestingly, deletions in the AlaArg motif of the carboxyl terminus disrupted the high-molecular-weight complex that is required for dephosphorylation of eIF-2alpha. These results demonstrate that gamma(1)34.5 is functionally active in the absence of any other HSV proteins. In addition to a PP1 binding domain, the carboxyl terminus of gamma(1)34.5 contains an effector domain that is required to form a functional complex.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.