HCMV Mutation Detail Information

Virus Mutation HCMV Mutation F412V


Basic Characteristics of Mutations
Mutation Site F412V
Mutation Site Sentence As before, F412V Pol was substantially impaired for degrading the N + 2 primer-template T4 (Fig.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Pol
Standardized Encoding Gene UL54  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 33563814
Title Resistance to a Nucleoside Analog Antiviral Drug from More Rapid Extension of Drug-Containing Primers
Author Chen H,Lawler JL,Filman DJ,Hogle JM,Coen DM
Journal mBio
Journal Info 2021 Feb 9;12(1):e03492-20
Abstract Nucleoside analogs are mainstays of antiviral therapy. Although resistance to these drugs hinders their use, understanding resistance can illuminate mechanisms of the drugs and their targets. Certain nucleoside analogs, such as ganciclovir (GCV), a leading therapy for human cytomegalovirus (HCMV), contain the equivalent of a 3'-hydoxyl moiety, yet their triphosphates can terminate genome synthesis (nonobligate chain termination). For ganciclovir, chain termination is delayed until incorporation of the subsequent nucleotide, after which viral polymerase idling (repeated addition and removal of incorporated nucleotides) prevents extension. Here, we investigated how an alanine-to-glycine substitution at residue 987 (A987G), in conserved motif V in the thumb subdomain of the catalytic subunit (Pol) of HCMV DNA polymerase, affects polymerase function to overcome delayed chain termination and confer ganciclovir resistance. Steady-state enzyme kinetic studies revealed no effects of this substitution on incorporation of ganciclovir-triphosphate into DNA that could explain resistance. We also found no effects of the substitution on Pol's exonuclease activity, and the mutant enzyme still exhibited idling after incorporation of GCV and the subsequent nucleotide. However, despite extending normal DNA primers similarly to wild-type enzyme, A987G Pol more rapidly extended ganciclovir-containing DNA primers, thereby overcoming chain termination. The mutant Pol also more rapidly extended RNA primers, a previously unreported activity for HCMV Pol. Structural analysis of related Pols bound to primer-templates provides a rationale for these results. These studies uncover a new drug resistance mechanism, potentially applicable to other nonobligate chain-terminating nucleoside analogs, and shed light on polymerase functions.IMPORTANCE While resistance to antiviral drugs can hinder their clinical use, understanding resistance mechanisms can illuminate how these drugs and their targets act. We studied a substitution in the human cytomegalovirus (HCMV) DNA polymerase that confers resistance to a leading anti-HCMV drug, ganciclovir. Ganciclovir is a nucleoside analog that terminates DNA replication after its triphosphate and the subsequent nucleotide are incorporated. We found that the substitution studied here results in an increased rate of extension of drug-containing DNA primers, thereby overcoming termination, which is a new mechanism of drug resistance. The substitution also induces more rapid extension of RNA primers, a function that had not previously been reported for HCMV polymerase. Thus, these results provide a novel resistance mechanism with potential implications for related nucleoside analogs that act against established and emerging viruses, and shed light on DNA polymerase functions.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.