KSHV Mutation Detail Information

Virus Mutation KSHV Mutation F66A


Basic Characteristics of Mutations
Mutation Site F66A
Mutation Site Sentence An ORF45-null or single-point F66A mutation in ORF45 abolishes ORF45-RSK interaction and sustained ERK-RSK activation during lytic reactivation and subsequently results in a significant decrease in late lytic gene expression and virion production, indicating that ORF45-mediated RSK activation plays a critical role in KSHV lytic replication.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region ORF45
Standardized Encoding Gene ORF45  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune Y
Target Gene RPS6KA3    MAPK1   
Clinical and Epidemiological Correlations
Clinical Information -
Treatment Rapamycin
Location -
Literature Information
PMID 30842327
Title Development of an ORF45-Derived Peptide To Inhibit the Sustained RSK Activation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus
Author Li X,Huang L,Xiao Y,Yao X,Long X,Zhu F,Kuang E
Journal Journal of virology
Journal Info 2019 May 1;93(10):e02154-18
Abstract The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) requires sustained extracellular signal-regulated kinase (ERK)-p90 ribosomal S6 kinase (RSK) activation, which is induced by an immediate early (IE) gene-encoded tegument protein called ORF45, to promote the late transcription and translation of viral lytic genes. An ORF45-null or single-point F66A mutation in ORF45 abolishes ORF45-RSK interaction and sustained ERK-RSK activation during lytic reactivation and subsequently results in a significant decrease in late lytic gene expression and virion production, indicating that ORF45-mediated RSK activation plays a critical role in KSHV lytic replication. Here, we demonstrate that a short ORF45-derived peptide in the RSK-binding region is sufficient for disrupting ORF45-RSK interaction, consequently suppressing lytic gene expression and virion production. We designed a nontoxic cell-permeable peptide derived from ORF45, TAT-10F10, which is composed of the ORF45 56 to 76 amino acid (aa) region and the HIV Tat protein transduction domain, and this peptide markedly inhibits KSHV lytic replication in iSLK.219 and BCBL1 cells. Importantly, this peptide enhances the inhibitory effect of rapamycin on KSHV-infected cells and decreases spontaneous and hypoxia-induced lytic replication in KSHV-positive lymphoma cells. These findings suggest that a small peptide that disrupts ORF45-RSK interaction might be a promising agent for controlling KSHV lytic infection and pathogenesis.IMPORTANCE ORF45-induced RSK activation plays an essential role in KSHV lytic replication, and ORF45-null or ORF45 F66A mutagenesis that abolishes sustained RSK activation and RSK inhibitors significantly decreases lytic replication, indicating that the ORF45-RSK association is a unique target for KSHV-related diseases. However, the side effects, low affinity, and poor efficacy of RSK modulators limit their clinical application. In this study, we developed a nontoxic cell-permeable ORF45-derived peptide from the RSK-binding region to disrupt ORF45-RSK associations and block ORF45-induced RSK activation without interfering with S6K1 activation. This peptide effectively suppresses spontaneous, hypoxia-induced, or chemically induced KSHV lytic replication and enhances the inhibitory effect of rapamycin on lytic replication and sensitivity to rapamycin in lytic KSHV-infected cells. Our results reveal that the ORF45-RSK signaling axis and KSHV lytic replication can be effectively targeted by a short peptide and provide a specific approach for treating KSHV lytic and persistent infection.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.