HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation F683V


Basic Characteristics of Mutations
Mutation Site F683V
Mutation Site Sentence gB-F683V showed reduced fusion compared to WT gB, indicating that, although a valine is functional in this position, a phenylalanine at this position promotes greater fusion.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region gB
Standardized Encoding Gene UL27  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 30327436
Title Natural Selection of Glycoprotein B Mutations That Rescue the Small-Plaque Phenotype of a Fusion-Impaired Herpes Simplex Virus Mutant
Author Fan Q,Kopp SJ,Byskosh NC,Connolly SA,Longnecker R
Journal mBio
Journal Info 2018 Oct 16;9(5):e01948-18
Abstract Glycoprotein B (gB) is a conserved viral fusion protein that is required for herpesvirus entry. To mediate fusion with the cellular membrane, gB refolds from a prefusion to a postfusion conformation. We hypothesize that an interaction between the C-terminal arm and the central coiled coil of the herpes simplex virus 1 (HSV-1) gB ectodomain is critical for fusion. We previously reported that three mutations in the C-terminal arm (I671A/H681A/F683A, called gB3A) greatly reduced cell-cell fusion and that virus carrying these mutations had a small-plaque phenotype and delayed entry into cells. By serially passaging gB3A virus, we selected three revertant viruses with larger plaques. These revertant viruses acquired mutations in gB that restore the fusion function of gB3A, including gB-A683V, gB-S383F/G645R/V705I/A855V, and gB-T509M/N709H. V705I and N709H are novel mutations that map to the portion of domain V that enters domain I in the postfusion structure. S383F, G645R, and T509M are novel mutations that map to an intersection of three domains in a prefusion model of gB. We introduced these second-site mutations individually and in combination into wild-type gB and gB3A to examine the impact of the mutations on fusion and expression. V705I and A855V (a known hyperfusogenic mutation) restored the fusion function of gB3A, whereas S383F and G645R dampened fusion and T509M and N709H worked in concert to restore gB3A fusion. The results identify two regions in the gB ectodomain that modulate the fusion activity of gB, potentially by impacting intramolecular interactions and stability of the prefusion and/or postfusion gB trimer.IMPORTANCE Glycoprotein B (gB) is an essential viral protein that is conserved in all herpesviruses and is required for virus entry. gB is thought to undergo a conformational change that provides the energy to fuse the viral and cellular membranes; however, the details of this conformational change and the structure of the prefusion and intermediate conformations of gB are not known. Previously, we demonstrated that mutations in the gB ""arm"" region inhibit fusion and impart a small-plaque phenotype. Using serial passage of a virus carrying these mutations, we identified revertants with restored plaque size. The revertant viruses acquired novel mutations in gB that restored fusion function and mapped to two sites in the gB ectodomain. This work supports our hypothesis that an interaction between the gB arm and the core of gB is critical for gB refolding and provides details about the function of gB in herpesvirus-mediated fusion and subsequent virus entry.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.