HBV Mutation Detail Information

Virus Mutation HBV Mutation G1386A


Basic Characteristics of Mutations
Mutation Site G1386A
Mutation Site Sentence Table 3
Mutation Level Nucleotide level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region X
Standardized Encoding Gene X  
Genotype/Subtype C/D
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location China
Literature Information
PMID 32532295
Title Complete genome analysis of hepatitis B virus in Qinghai-Tibet plateau: the geographical distribution, genetic diversity, and co-existence of HBsAg and anti-HBs antibodies
Author Liu H,Shen L,Zhang S,Wang F,Zhang G,Yin Z,Qiu F,Liang X,Wang F,Bi S
Journal Virology journal
Journal Info 2020 Jun 12;17(1):75
Abstract BACKGROUND: The genetic variation and origin of Hepatitis B Virus (HBV) in Qinghai-Tibet Plateau were poorly studied. The coexistence of HBsAg and anti-HBs has been described as a puzzle and has never been reported in the indigenous population or in recombinant HBV sequences. This study aimed to report geographical distribution, genetic variability and seroepidemiology of HBV in southwest China. METHODS: During 2014-2017, 1263 HBsAg positive serum were identified and 183 complete genome sequences were obtained. Serum samples were collected from community-based populations by a multistage random sampling method. Polymerase chain reaction (PCR) was used to amplify the HBV complete genome sequences. Then recombination, genetic variability, and serological analysis were performed. RESULTS: (1) Of the 1263 HBsAg positive serum samples, there were significant differences between the distribution of seromarkers in Tibet and Qinghai. (2) Of 183 complete genome sequences, there were 130 HBV/CD1 (71.0%), 49 HBV/CD2 (26.8%) and four HBV/C2 isolates (2.2%). Serotype ayw2 (96.1%) was the main serological subtype. (3) Several nucleotide mutations were dramatically different in CD1 and CD2 sequences. Clinical prognosis-related genetic variations such as nucleotide mutation T1762/A1764 (27.93%), A2189C (12.85%), G1613A (8.94%), T1753C (8.38%), T53C (4.47%) T3098C (1.68%) and PreS deletion (2.23%) were detected in CD recombinants. (4) From the inner land of China to the northeast boundary of India, different geographical distributions between CD1 and CD2 were identified. (5) Twenty-seven (2.14%) HBsAg/HBsAb coexistence serum samples were identified. S protein amino acid mutation and PreS deletion were with significant differences between HBsAg/HBsAb coexistence group and control group. CONCLUSIONS: HBV/CD may have a mixed China and South Asia origin. Based on genetic variations, the clinical prognosis of CD recombinant seems more temperate than genotype C strains in China. The HBsAg/HBsAb coexistence is a result of both PreS deletion and aa variation in S protein. Several unique mutations were frequently detected in HBV/CD isolates, which could potentially influence the clinical prognosis.
Sequence Data MN683570-MN683729; MN657315-MN657318; KX660674-KX660690
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.