SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation G142D


Basic Characteristics of Mutations
Mutation Site G142D
Mutation Site Sentence TABLE 3
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B.1.617.2;Delta
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 36799912
Title COVID-19: Attacks Immune Cells and Interferences With Antigen Presentation Through MHC-Like Decoy System
Author Liu W,Li H
Journal Journal of immunotherapy (Hagerstown, Md. : 1997)
Journal Info 2023 Apr 1;46(3):75-88
Abstract The high mortality of coronavirus disease 2019 is related to poor antigen presentation and lymphopenia. Cytomegalovirus and the herpes family encode a series of major histocompatibility complex (MHC)-like molecules required for targeted immune responses to achieve immune escape. In this present study, domain search results showed that many proteins of the severe acute respiratory syndrome coronavirus 2 virus had MHC-like domains, which were similar to decoys for the human immune system. MHC-like structures could bind to MHC receptors of immune cells (such as CD4 + T-cell, CD8 + T-cell, and natural killer-cell), interfering with antigen presentation. Then the oxygen free radicals generated by E protein destroyed immune cells after MHC-like of S protein could bind to them. Mutations in the MHC-like region of the viral proteins such as S promoted weaker immune resistance and more robust transmission. S 127-194 were the primary reason for the robust transmission of delta variants. The S 144-162 regulated the formation of S trimer. The mutations of RdRP: G671S and N: D63G of delta variant caused high viral load. S 62-80 of alpha, beta, lambda variants were the important factor for fast-spreading. S 616-676 and 1014-1114 were causes of high mortality for gamma variants infections. These sites were in the MHC-like structure regions.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.