HBV Mutation Detail Information

Virus Mutation HBV Mutation G145R


Basic Characteristics of Mutations
Mutation Site G145R
Mutation Site Sentence Anti-HBs binding to synthetic peptids (25-mers, 7aa overlap) from the ""a""-loop was significantly reduced by the G145R substitution and by changing the amino acid sequence from adw(2) into adr.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 11395201
Title Anti-HBs after hepatitis B immunization with plasma-derived and recombinant DNA-derived vaccines: binding to mutant HBsAg
Author Heijtink RA,van Bergen P,van Roosmalen MH,Sunnen CM,Paulij WP,Schalm SW,Osterhaus AD
Journal Vaccine
Journal Info 2001 Jun 14;19(27):3671-80
Abstract The G145R mutant of the small S-protein is a major escape mutant of hepatitis B virus observed in natural infection, after immunization and HBIG therapy. In a previous study we found that plasma-derived and recombinant DNA-derived vaccine HBsAg reacted differently with monoclonal antibodies sensitive for the G145R change. In the present study we investigated the binding of polyclonal anti-HBs obtained after immunization with plasma vaccine and recombinant DNA vaccine to synthetic peptides (adw(2), adr) and rHBsAg (HepG2) (ayw(3); wild type and a 145R mutant). Anti-HBs binding to synthetic peptids (25-mers, 7aa overlap) from the ""a""-loop was significantly reduced by the G145R substitution and by changing the amino acid sequence from adw(2) into adr. With mutant G145R rHBsAg the inhibitory activity of vaccine anti-HBs was decreased compared to rHBsAg wild type. In general only minor differences were observed between plasma vaccine and recombinant DNA vaccine related antibody responses. However, the individual heterogeneity in epitope specific reactivity with its possible consequences for protection (against escape mutants) is not reflected in an anti-HBs titer by standard anti-HBs assays. The presented differentiation in anti-HBs response after immunization may deliver new tools for evaluation of future vaccines.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.