HBV Mutation Detail Information

Virus Mutation HBV Mutation G145R


Basic Characteristics of Mutations
Mutation Site G145R
Mutation Site Sentence Besides, some HBsAg variations in group I patients, sG145R mutation, inserted mutations, and continuous aa mutations within the major hydrophilic region (MHR), decreased the neutralized capacity of anti-HBs from HBV vaccinated persons.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype B
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B, Chronic    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location China
Literature Information
PMID 28198078
Title Mutation in the S gene of hepatitis B virus and anti-HBs subtype-nonspecificity contributed to the co-existence of HBsAg and anti-HBs in patients with chronic hepatitis B virus infection
Author Fu X,Chen J,Chen H,Lin J,Xun Z,Li S,Liu C,Zeng Y,Chen T,Yang B,Ou Q
Journal Journal of medical virology
Journal Info 2017 Aug;89(8):1419-1426
Abstract The mechanism for the co-existence of hepatitis B surface antigen (HBsAg) and antibodies to HBsAg (anti-HBs) in chronic HBV infected patients remains controversial. This study aimed to explore the role of HBV S gene mutation and anti-HBs subtype-nonspecificity in patients with simultaneous HBsAg/anti-HBs positivity. Chronic HBV infections with (n = 145, group I) and without (n = 141, group II) anti-HBs were included. The S gene was amplified and sequenced. The neutralization experiment was used in group I patients' sera to determine the specificity of anti-HBs. Additionally, the HBV vaccinated persons' sera were used to estimate the neutralize capacity of anti-HBs against HBsAg in group I patients. Results showed that 2.63% (145/5513) chronic HBV infected patients had positive results for anti-HBs. HBsAg amino acid (aa) substitution rate in 35 patients of group I was significantly higher than that in 58 patients of group II (1.89% vs 0.95%, P < 0.05), especially within ""a"" determinant (4.05% vs 1.22%, P < 0.05). In group I patients, anti-HBs in (74.29%, 26/35) patients was not directed to the subtypes of the co-existing HBsAg. Besides, some HBsAg variations in group I patients, sG145R mutation, inserted mutations, and continuous aa mutations within the major hydrophilic region (MHR), decreased the neutralized capacity of anti-HBs from HBV vaccinated persons. In conclusion, both of HBsAg mutation and anti-HBs subtype-nonspecificity contributed to the co-existence of HBsAg and anti-HBs in chronic HBV infection. HBV vaccine recipients may still have a risk of HBV infection when exposure to patients with simultaneous HBsAg/anti-HBs positivity.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.