SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation G1691C


Basic Characteristics of Mutations
Mutation Site G1691C
Mutation Site Sentence The genome has four novel non-synonymous mutations in V121D; V843F; A889V; and G1691C positions.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NSP3
Standardized Encoding Gene ORF1a  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Bangladesh
Literature Information
PMID 33797663
Title Novel mutations in NSP-1 and PLPro of SARS-CoV-2 NIB-1 genome mount for effective therapeutics
Author Hossain MU,Bhattacharjee A,Emon MTH,Chowdhury ZM,Ahammad I,Mosaib MG,Moniruzzaman M,Rahman MH,Islam MN,Ahmed I,Amin MR,Rashed A,Das KC,Keya CA,Salimullah M
Journal Journal, genetic engineering & biotechnology
Journal Info 2021 Apr 2;19(1):52
Abstract BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is rapidly acquiring new mutations. Analysis of these mutations is necessary for gaining knowledge regarding different aspects of therapeutic development. Previously, we have reported a Sanger method-based genome sequence of a viral isolate named SARS-CoV-2 NIB-1, circulating in Bangladesh. The genome has four novel non-synonymous mutations in V121D, V843F, A889V, and G1691C positions. RESULTS: Using different computational tools, we have found V121D substitution has the potential to destabilize the non-structural protein-1 (NSP-1). NSP-1 inactivates the type-1 interferon-induced antiviral system. Hence, this mutant could be a basis of attenuated vaccines against SARS-CoV-2. V843F, A889V, and G1691C are all located in nonstructural protein-3 (NSP-3). G1691C can decrease the flexibility of the protein. V843F and A889V might change the binding pattern and efficacy of SARS-CoV-2 papain-like protease (PLPro) inhibitor GRL0617. V843F substitution in PLPro was the most prevalent mutation in the clinical samples. This mutation showed a reduced affinity for interferon-stimulated gene-15 protein (ISG-15) and might have an impact on innate immunity and viral spread. However, V843F+A889V double mutant exhibited the same binding affinity as wild type PLPro. A possible reason behind this phenomenon can be that V843F is a conserved residue of PLPro which damaged the protease structure, but A889V, a less conserved residue, presumably neutralized that damage. CONCLUSIONS: Mutants of NSP-1 could provide attenuated vaccines against coronavirus. Also, these mutations of PLPro might be targeted to develop better anti-SARS therapeutics. We hope our study will help to get better insides during the development of attenuated vaccine and PLPro inhibitors.
Sequence Data MT509958.1
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.