HBV Mutation Detail Information

Virus Mutation HBV Mutation G1896A


Basic Characteristics of Mutations
Mutation Site G1896A
Mutation Site Sentence CONCLUSIONS: In this population with chronic HBeAg negative hepatitis B, an association was observed between the G1896A mutation in the Pre-core region of HBV and subsequent level of HBV DNA seven years later, which indicated that mutations in this region of HBV genome may contribute to disease progression in these patients and play an important role in HBV natural course of disease.
Mutation Level Nucleotide level
Mutation Type Nonsense mutation
Gene/Protein/Region PreC
Standardized Encoding Gene C  
Genotype/Subtype D
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B, Chronic    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment -
Location Iran
Literature Information
PMID 25788956
Title Association of Mutations in the Basal Core Promoter and Pre-core Regions of the Hepatitis B Viral Genome and Longitudinal Changes in HBV Level in HBeAg Negative Individuals: Results From a Cohort Study in Northern Iran
Author Besharat S,Poustchi H,Mohamadkhani A,Katoonizadeh A,Moradi A,Roshandel G,Freedman ND,Malekzadeh R
Journal Hepatitis monthly
Journal Info 2015 Feb 21;15(2):e23875
Abstract BACKGROUND: Although certain HBV mutations are known to affect the expression of Hepatitis e antigen, their association with HBV viral level or clinical outcomes is less clear. OBJECTIVES: We evaluated associations between different mutations in the Basal Core promoter (BCP) and Pre-core (PC) regions of HBV genome and subsequent changes in HBV viral DNA level over seven years in a population of untreated HBeAg negative chronic hepatitis B (CHB) participants in Northeast of Iran. MATERIALS AND METHODS: Participants in the current study were drawn from the Golestan Hepatitis B Cohort Study (GHBCS), a cohort of approximately 2590 HBsAg positive subjects (living in Gonbad city) embedded in the Golestan Cohort Study (GCS). At baseline, HBsAg was measured in all participants and revealed 2590 HBsAg positive cases. We randomly selected 304 participants who their blood sample were taken at both baseline and seven years later in follow-up and had not been treated for HBV during this time. HBV viral load were assessed at baseline and at year 7. The BCP and PC regions of the HBV DNA, at baseline, were amplified via hemi-nested PCR and sequenced by cycle sequencing. At year 7, liver stiffness was assessed by fibroscan; also, other parameters of liver disease were assessed following standard clinical protocols. Associations were assessed via tabulation, chi-square, t-tests and logistic regression. P values < 0.05 were considered statistically significant and all tests were two-sided. RESULTS: Among 304 HBsAg positive participants, 99 had detectable HBV DNA at study baseline. Of these, 61.6% had PC mutations (48.5% A1896 and 25.2% G1899). In contrast to other mutations, A1896 was associated with a higher proportion of detectable HBV DNA at year 7 (39.6%) compared to patients with the wild type (13.7%) (OR: 4.36, CI95% = 1.63-11.70; P Value = 0.002). Although participants with the A1896 mutation had higher year-7 HBV viral load than participants with G1896 (2.30 +/- 1.66 IU/mL vs. 1.76 +/- 1 IU/mL among patients with detectable HBV; P value = 0.052), no association was observed with either serum level ALT or liver stiffness. Interestingly, mutations in the basal core promoter (BCP) region had no significant effect on virus DNA detection. CONCLUSIONS: In this population with chronic HBeAg negative hepatitis B, an association was observed between the G1896A mutation in the Pre-core region of HBV and subsequent level of HBV DNA seven years later, which indicated that mutations in this region of HBV genome may contribute to disease progression in these patients and play an important role in HBV natural course of disease.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.