IV Mutation Detail Information

Virus Mutation IV Mutation G1E


Basic Characteristics of Mutations
Mutation Site G1E
Mutation Site Sentence The G1E mutant may have disrupted FP hairpins, with consequent non-native FP binding to dissociated SE strands.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region HA2
Standardized Encoding Gene HA
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 30141905
Title The Stabilities of the Soluble Ectodomain and Fusion Peptide Hairpins of the Influenza Virus Hemagglutinin Subunit II Protein Are Positively Correlated with Membrane Fusion
Author Ranaweera A,Ratnayake PU,Weliky DP
Journal Biochemistry
Journal Info 2018 Sep 18;57(37):5480-5493
Abstract Cellular entry of influenza virus is mediated by the viral protein hemagglutinin (HA), which forms an initial complex of three HA1 and three HA2 subunits. Each HA2 includes a fusion peptide (FP), a soluble ectodomain (SE), and a transmembrane domain. HA1 binds to cellular sialic acids, followed by virus endocytosis, pH reduction, dissociation of HA1, and structural rearrangement of HA2 into a final trimer-of-SE hairpins. A decrease in pH also triggers HA2-mediated virus/endosome membrane fusion. SE hairpins have an interior parallel helical bundle and C-terminal strands in the grooves of the exterior of the bundle. FPs are separate helical hairpins. This study compares wild-type HA2 (WT-HA2) with G1E(FP) and I173E(SE strand) mutants. WT-HA2 induces vesicle fusion at pH 5.0, whereas the extent of fusion is greatly reduced for both mutants. Circular dichroism for HA2 and FHA2 identical withFP+SE constructs shows dramatic losses of stability for the mutants, including a T(m) reduced by 40 degrees C for I173E-FHA2. This is evidence of destabilization of SE hairpins via dissociation of strands from the helical bundle, which is also supported by larger monomer fractions for mutant versus WT proteins. The G1E mutant may have disrupted FP hairpins, with consequent non-native FP binding to dissociated SE strands. It is commonly proposed that free energy released by the HA2 structural rearrangement catalyzes HA-mediated fusion. This study supports an alternate mechanistic model in which fusion is preceded by FP insertion in the target membrane and formation of the final SE hairpin. Less fusion by the mutants is due to the loss of hairpin stability and consequent reduced level of membrane apposition of the virus and target membranes.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.