HIV Mutation Detail Information

Virus Mutation HIV Mutation G310L


Basic Characteristics of Mutations
Mutation Site G310L
Mutation Site Sentence Of the Env V3 tip mutants (S304G, G308V/E,and G310R/L/E/K),S304G was used as a positive control for enhanced growth potential in both CyM and human cells.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Env
Standardized Encoding Gene Env  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease Acquired Immunodeficiency Syndrome    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment Env V3 tip
Location -
Literature Information
PMID 33883222
Title Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip
Author Koma T,Yokoyama M,Kotani O,Doi N,Nakanishi N,Okubo H,Adachi S,Adachi A,Sato H,Nomaguchi M
Journal Journal of virology
Journal Info 2021 Jun 10;95(13):e0217720
Abstract Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.