DENV Mutation Detail Information

Virus Mutation DENV Mutation G92E


Basic Characteristics of Mutations
Mutation Site G92E
Mutation Site Sentence TABLE 4
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS3
Standardized Encoding Gene NS3
Genotype/Subtype DENV-3;DENV-2
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 37555662
Title Dengue virus serotypic replacement of NS3 protease or helicase domain causes chimeric viral attenuation but can be recovered by a compensated mutation at helicase domain or NS2B, respectively
Author Teramoto T
Journal Journal of virology
Journal Info 2023 Aug 31;97(8):e0085423
Abstract Mosquito-borne dengue viruses (DENVs) have evolved to four serotypes with 69%-78% amino acid identities, resulting in incomplete immunity, where one serotype's infection does not cross-protect against secondary infections by other serotypes. Despite the amino acid differences, structural and nonstructural (NS) proteins among serotypes play similar functions. NS3 is an enzyme complex: NS3 has N-terminal protease (PRO) and C-terminal helicase (HEL) activities in addition to 5' RNA triphosphatase (5'RTP), which is involved in the RNA capping process. In this study, the effects of NS3 replacements among serotypes were tested. The replacement of NS3 full-length (FULL), PRO or HEL region suppressed viral replication in BHK-21 mammalian cells, while the single compensatory mutation improved the viral replications; P364S mutation in HEL revived PRO (DENV3)-replaced DENV1, while S68T alteration in NS2B recovered HEL (DENV1)-replaced DENV2. The results suggest that the interactions between PRO and HEL as well as HEL and NS2B are required for replication competence. Lower-frequency mutations also appeared at various locations in viral proteins, although after infecting C6/36 mosquito cells, the mutations' frequencies changed, and/or new mutations appeared. In contrast, the inter-domain region (INT, 12 amino acids)-replaced chimera quickly replicated without mutation in BHK-21 cells, although extended cell culture accumulated various mutations. These results suggest that NS3 variously interacts with DENV proteins, in which the chimeric NS3 domain replacements induced amino acid mutations, irrespective of replication efficiency. However, the viral sequences are further adjusted for replication efficiency, to fit in both mammalian cells and mosquito cells. IMPORTANCE Enzyme activities for replicating DENV 5' cap positive (+) sense RNA have been shown to reside in NS3 and NS5. However, it remains unknown how these enzymes coordinately synthesize negative (-) sense RNA, from which abundant 5' cap (+) sense RNA is produced. We previously revealed that NS5 dimerization and NS5 methyltransferase(MT)-NS3HEL interaction are important for DENV replication. Here, we found that replication incompetence due to NS3PRO or HEL replacement was compensated by a mutation at HEL or NS2B, respectively, suggesting that the interactions among NS2B, NS3PRO, and HEL are critical for DENV replication.
Sequence Data PRJNA916891
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.