IV Mutation Detail Information

Virus Mutation IV Mutation H275Y


Basic Characteristics of Mutations
Mutation Site H275Y
Mutation Site Sentence Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NA
Standardized Encoding Gene NA
Genotype/Subtype H1N1
Viral Reference -
Functional Impact and Mechanisms
Disease Influenza A    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment Oseltamivir
Location Australia
Literature Information
PMID 21731753
Title Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting
Author Tong SY,Dakh F,Hurt AC,Deng YM,Freeman K,Fagan PK,Barr IG,Giffard PM
Journal PloS one
Journal Info 2011;6(6):e21446
Abstract INTRODUCTION: We aimed to design a real-time reverse-transcriptase-PCR (rRT-PCR), high-resolution melting (HRM) assay to detect the H275Y mutation that confers oseltamivir resistance in influenza A/H1N1 2009 viruses. FINDINGS: A novel strategy of amplifying a single base pair, the relevant SNP at position 823 of the neuraminidase gene, was chosen to maintain specificity of the assay. Wildtype and mutant virus were differentiated when using known reference samples of cell-cultured virus. However, when dilutions of these reference samples were assayed, amplification of non-specific primer-dimer was evident and affected the overall melting temperature (T(m)) of the amplified products. Due to primer-dimer appearance at >30 cycles we found that if the cycle threshold (C(T)) for a dilution was >30, the HRM assay did not consistently discriminate mutant from wildtype. Where the C(T) was <30 we noted an inverse relationship between C(T) and T(m) and fitted quadratic curves allowed the discrimination of wildtype, mutant and 30ratio70 mutantratiowildtype virus mixtures. We compared the C(T) values for a TaqMan H1N1 09 detection assay with those for the HRM assay using 59 clinical samples and demonstrated that samples with a TaqMan detection assay C(T)>32.98 would have an H275Y assay C(T)>30. Analysis of the TaqMan C(T) values for 609 consecutive clinical samples predicted that 207 (34%) of the samples would result in an HRM assay C(T)>30 and therefore not be amenable to the HRM assay. CONCLUSIONS: The use of single base pair PCR and HRM can be useful for specifically interrogating SNPs. When applied to H1N1 09, the constraints this placed on primer design resulted in amplification of primer-dimer products. The impact primer-dimer had on HRM curves was adjusted for by plotting T(m) against C(T). Although less sensitive than TaqMan assays, the HRM assay can rapidly, and at low cost, screen samples with moderate viral concentrations.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.