MARV Mutation Detail Information

Virus Mutation MARV Mutation H96L


Basic Characteristics of Mutations
Mutation Site H96L
Mutation Site Sentence FIG 6 The VP30 zinc binding motif is required for transcription reinitiation activity. (A) Huh7 P1 target cells in a 96-well format were transfected with VP35, NP, and, as indicated, VP30, VP30 C92S/H96L, and L. The transfected cells were infected with ptrVLPs.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region VP30
Standardized Encoding Gene VP30  
Genotype/Subtype -
Viral Reference DQ217792.1
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 35997284
Title Marburg Virus VP30 Is Required for Transcription Initiation at the Glycoprotein Gene
Author Edwards MR,Vogel OA,Mori H,Davey RA,Basler CF
Journal mBio
Journal Info 2022 Oct 26;13(5):e0224322
Abstract Marburg virus (MARV) is an enveloped, negative-sense RNA virus from the filovirus family that causes outbreaks of severe, frequently fatal illness in humans. Of the seven MARV proteins, the VP30 protein stands out because it is essential for viral growth but lacks a definitive function. Here, we used model MARV genome RNAs for one or two reporter genes and the MARV VP40, glycoprotein (GP), and VP24 genes to demonstrate that VP30 is dispensable for the transcription of some genes but critical for transcription reinitiation at the GP gene. This results in the loss of the expression of GP and downstream genes and the impaired production of infectious particles when VP30 is absent. Bicistronic minigenome assays demonstrate that the VP40 gene end/GP gene start junction specifically confers VP30 dependence. A region at the GP gene start site predicted to form a stem-loop contributes to VP30 dependence because the replacement of the GP stem-loop with corresponding sequences from the MARV VP35 gene relieves VP30 dependence. Finally, a Cys(3)-His zinc binding motif characteristic of filovirus VP30 proteins was demonstrated to be critical for reinitiation at GP. These findings address a long-standing gap in our understanding of MARV biology by defining a critical role for VP30 in MARV transcription. IMPORTANCE Marburg virus and Ebola virus encode VP30 proteins. While the role of VP30 in Ebola virus transcription has been well studied, the role of VP30 in the Marburg virus life cycle is not well understood. The work here demonstrates that different gene start sites within the Marburg viral genome have variable levels of dependence on Marburg virus VP30, with its expression being critical for transcription reinitiation at the GP gene start site. These findings address a long-standing question regarding Marburg virus VP30 function and further our understanding of how Marburg virus gene expression is regulated.
Sequence Data PRJNA750472
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.