DENV Mutation Detail Information

Virus Mutation DENV Mutation I106V


Basic Characteristics of Mutations
Mutation Site I106V
Mutation Site Sentence We found that isoleucine was replaced by valine at residue 106 of protein C in the isolates from these 2005-2006 outbreaks and in those from the 1997, 1998 and 2001 outbreaks in the Caribbean islands.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region C
Standardized Encoding Gene Capsid
Genotype/Subtype DENV-2 Asian/American;DENV-2 Asian;DENV-2 American;DENV-2 Cosmopolitan
Viral Reference -
Functional Impact and Mechanisms
Disease Dengue    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Caribbean
Literature Information
PMID 18625078
Title Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico
Author Gardella-Garcia CE,Perez-Ramirez G,Navarrete-Espinosa J,Cisneros A,Jimenez-Rojas F,Ramirez-Palacios LR,Rosado-Leon R,Camacho-Nuez M,Munoz Mde L
Journal BMC microbiology
Journal Info 2008 Jul 15;8:117
Abstract BACKGROUND: Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections. RESULTS: 1. We obtained 88 isolates of DENV, 27 from Oaxaca and 61 from Veracruz. 2. Of these 88 isolates, 16 were serotype 1; 62 serotype 2; 7 serotype 3; and 2 serotype 4. One isolate had 2 serotypes (DENV-2 and -1). 3. Partial nucleotide sequences of the genes encoding C- prM (14 sequences), the NS3 helicase domain (7 sequences), the NS5 S-adenosyl methionine transferase domain (7 sequences) and the RNA-dependent RNA polymerase (RdRp) domain (18 sequences) were obtained. Phylogenetic analysis showed that DENV-2 isolates belonged to the Asian/American genotype. In addition, the Asian/American genotype was divided into two clusters, one containing the isolates from 2001 and the other the isolates from 2005-2006 with high bootstrap support of 94%. CONCLUSION: DENV-2 was the predominant serotype in the DF and DHF outbreak from 2005 to 2006 in Oaxaca State as well as in the 2006 outbreak in Veracruz State, with the Asian/American genotype prevalent in both states. Interestingly, DENV-1 and DENV-2 were the only serotypes related to DHF cases. In contrast, DENV-3 and DENV-4 were poorly represented according to epidemiological data reported in Mexico. We found that isoleucine was replaced by valine at residue 106 of protein C in the isolates from these 2005-2006 outbreaks and in those from the 1997, 1998 and 2001 outbreaks in the Caribbean islands. We suggested that this amino acid change may be used as a signature for isolates arising in the Caribbean islands and pertaining to the Asian/American genotype. Other amino acid changes are specific for the Asian/American, Asian and American strains.
Sequence Data AB122020;AB122021;AB122022;AF208496;AF360860;AF360861;AY702034;AY702035;AY702036;AY702037;AY702038;AY702039;EF595800;EF595821;EF595822;EF595823;EF595824;EF595828;EF595829;EF595834;EU552534;EU552535;EU552536;EU552537;EU552538;EU552539
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.